
Train Marshalling Problem

- Algorithms and Bounds -

Katharina Beygang∗ Florian Dahms† Sven O. Krumke∗

Abstract

The Train Marshalling Problem consists of rearranging an incoming
train in a marshalling yard in such a way that cars with the same
destinations appear consecutively in the final train and the number of
needed sorting tracks is minimized. Besides an initial roll-in operation,
just one pull-out operation is allowed. This problem was introduced by
Dahlhaus et al [2] who also showed that the problem is NP-complete.

In this paper, we provide a new lower bound on the optimal objec-
tive value by partitioning an appropriate interval graph. Furthermore,
we consider the corresponding online problem, for which we provide
upper and lower bounds on the competitiveness and a corresponding
optimal deterministic online algorithm.

We provide an experimental evaluation of our lower bound and
algorithm which shows the practical tightness of the results.

Keywords: Train Rearrangement, Online Algorithms, Competitive
Analysis, Greedy Heuristic, Bell Number

1 Introduction

Marshalling yards (hump yards) play a decisive role in railroad life.
They are responsible for arranging freight cars into specific sequences
to assemble specific trains. A shunting yard consists of a hump, a set of
parallel classification tracks (sorting tracks) and a roll-in and pull-out
track. Any car which arrives at the shunting yard, rolls down from
the hump, via the roll-in track to a classification track. The pull-out
track reunites the cars resp. the block of cars by placing all cars from
one of the tracks at the beginning of the rearranged train, followed by
the cars of another track and so on such that all cars with the same
destination are blocked together.

In such a marshalling yard, the most elementary operations are

∗Department of Mathematics, University of Kaiserslautern, Paul-Ehrlich-Str. 14,

67663 Kaiserslautern, Germany. {beygang,krumke}@mathematik.uni-kl.de
†Department of Operation Research, RWTH Aachen University, Templergraben

64, 52062 Aachen, Germany. florian.dahms@googlemail.com

1



• decoupling the trains in front of the hump and pulling them over
the hump (roll-in operations), and

• pulling the cars out of the classification tracks and reuniting them
at the pull-out track (pull-out operations).

Both processes are operated by shunting locomotives. Due to limited
resources and reasons of economy, the most important parameters in
rearranging trains (cars) are

• the number of classification tracks,

• the length of classification tracks,

• the number of roll-in operations, and

• the number of pull-out operations.

Figure 1 – Structure (side view and bird’s eye view) of a mar-
shalling yard.

Figure 2 – Abstract illustration of a hump yard.

Figure 1 provides a schematic representation of a marshalling yard,
shown during roll-in and pull-out operations. We will use an abstract
illustration of a hump yard throughout this paper (see Figure 2).

In this paper we study the Train Marshalling Problem (tmp for short)
where the car capacity of each classification track is set to be infinity.
Additionally we allow one roll-in operation for every car and just one
pull-out operation per track. This keeps the coupling and decoupling
operations within a limit. Since it might be better that cars of a certain
property, in particular with the same destination, appear consecutively
(due to timetable restrictions etc.), we consider the problem of creating
an outgoing train from a set of arriving trains where the cars with

2



certain properties are grouped together, i.e., form a block. Thereby,
we do not require that the blocks have to appear in a certain ordering.

The paper is organized as follows: after the problem definition (Sec-
tion 1.1), some preliminaries (Section 1.2) and an overview of related
work (Section 1.3), we discuss the offline scenario in Section 2. We
present some basic results and lower bounds on the optimal solutions.
In Section 3, the online version of the Train Marshalling Problem is
analyzed. We develop a deterministic online algorithm using greedy
strategies. Afterwards we show that its competitive factor of 2 is in fact
best possible among deterministic algorithms. In Section 4 computa-
tional results for the online algorithm and lower bounds are presented.
We conclude with an appendix providing the theoretical background
on how to generate instances for the computational experiments.

1.1 Problem Definition

Each car i arriving at the hump is identified with a positive integer
σi denoting its destination. A train σ of length n is defined as a
sequence of cars, i.e. σ = (σ1, . . . , σn) with σi ∈ N, i ∈ {1, . . . , n}.
The objective is to find the minimum number of movements of the
shunting locomotives for the pull-out operations which are necessary
to rearrange the train according to the destinations. This is equivalent
to the target of minimizing the number of classification tracks which
we denote by K(σ).

Example 1.1. Sequence σ = (1, 2, 2, 1) with σ1 = σ4 and σ2 = σ3

represents a train whose first and last car have destination 1, while the
second and third car have to go to destination 2.

It will sometimes be convenient to reformulate the problem as Dahlhaus
et al. [2] have done: Consider the set In = {1, 2, . . . .n} where every
element stands for a car of a train of length n, and a partition of the set
S = {S(1), . . . , S(t)} whose elements correspond to the destinations.
The latter means that an element of S, i.e., S(k), contains all cars
having destination k.

Example 1.2. The equivalent formulation of instance σ from Example
1.1 is S = {S(1), S(2)} with S(1) = {1, 4} and S(2) = {2, 3}.

Thus,tmp reads as follows:

Definition 1.1 (tmp). Find the smallest number K(S) so that there
exists a permutation π(1), . . . , π(t) of 1, . . . , t so that the sequence of
numbers

1, 2, . . . , n, 1, 2, . . . , n, 1, 2, . . . , n

where the sequence 1, 2, . . . , n is repeated K(S) times contains all the
elements of S(π(1)), followed by the elements of S(π(2)) and so on.

3



12 313

12

3

3

13 31 12

final train rearrangement arriving train

Figure 3 – Example of rearranging train S = {S(1), S(2), S(3)}
with S(1) = {1, 4}, S(2) = {2} and S(3) = {3, 5}.

After a thought of moment, we see that both formulations are equiv-
alent, in particular K(S) = K(σ). For convenience, in Section 2 we
will use the formulation stated in Definition 1.1. In Section 3, the in-
stances will be defined as sequences. In general, if the input is denoted
by S, we are talking about the representation via sets. Otherwise, the
formulation via sequences is used.
In the following, “element of S” and “number”, “destination” and
“car” as well as “round” and “track” denote the same.

1.2 Preliminaries

Here, we provide the reader with the necessary notations needed in the
following sections. Therefore, we will use tmp instances S defined via
sets (formulation of Dahlhaus and others). It should be obvious how
one can define everything equivalently in terms of input sequences σ.

Let S
n be the set of all problem instances of tmp with n cars. For

S ∈ S
n, the number of destinations is denoted by d(S). In the following

we abbreviate d(S) by d if it does not cause confusions.

A feasible rearrangement for an instance S ∈ S
n is a mapping tr :

{1, . . . , n} → {1, . . . , d} using | tr | tracks. Note that we can always
find a feasible rearrangement by simply assigning each destination on
its own track. This results in K(S) ≤ d.

The first and last car in S of destination k (with 1 ≤ k ≤ d) is denoted
by first(S, k) and last(S, k), respectively. Furthermore we denote the
first and last car of a track i as first(i) and last(i), respectively.

Now let tr : {1, . . . , n} → {1, . . . , d} is a rearrangement of S. Then, a
destination is called split if two cars with the same destination have
been assigned to two different (classification) tracks, i.e., there exist
i, j ∈ {1, . . . , n} with i, j ∈ S(k) (and 1 ≤ k ≤ d) and tr(i) 6= tr(j).
Otherwise we are talking about an unsplit destination.

It will be helpful to distinguish between complete and incomplete des-
tinations. Assume that we have already assigned step by step the first
k cars of S to the tracks. Then a destination l is called complete,
if all cars with destination l have already been assigned, i.e., for all

4



1 ≤ i ≤ n with i ∈ S(l) we have i ≤ k. Otherwise we call a destination
incomplete.

For instances denoted by sequences, let Σn be the set of all problem
instances of length n. Analogously, for σ ∈ Σn we can define d(σ),
first(σ, k), and last(σ, k) and so forth.

1.3 Related Work

In this paper, our focus will be on the Train Marshalling Problem al-
lowing one sorting step while leaving freedom to the ordering of the
destinations, in particular of the cars. It is first investigated and ana-
lyzed by Dahlhaus and others [2]. They show that the decision variant
of this problem is, in general, NP-complete by providing a reduction
from Numerical Matching with Target Sums which is also known to be
NP-complete [7]. Furthermore the authors prove that for any instance
at most ⌈n

4 + 1
2⌉ tracks are needed where n denotes the number of cars

of the inbound train. In [3], Dahlhaus and others discuss the problem
for the case that the final position of each car is neither fixed nor arbi-
trary but has to fulfill certain requirements. To specify the ordering,
they use a P -Q tree where the leaves are the cars and the inner nodes
correspond to “blocks”, i.e., groups of cars. In blocks which are marked
as P -nodes, the sub-blocks, in particular cars, can be permuted in any
order in the final train. In blocks which are Q-nodes, the sequence
of immediate sub-blocks is predetermined. Knowing that this kind of
problem is NP-complete, they investigate special cases and provide
approximate solutions.

There is abundant literature in the field of railway optimization. A
detailed survey about other commonly used and new shunting, mar-
shalling or classification problems is given by Gatto and others [8].
They approach the problems from an algorithmic point of view to give
an entry point in the field of railway optimization. Di Stefano and
others proposed models for rearranging cars of trains in [5] as well. It
is intended for the project ARRIVAL - “Algorithms for Robust and
online Railway optimization: Improving the Validity and reliAbility of
Large scale systems”.
The problem of sorting a sequence of numbers using a network of
queues and stacks is presented in [6] and [13]. Di Stefano and Koči [4]
deal with the problem of how to assign the arriving tram to the night
depot such that they can be pulled out with a minimal number of
shunting operations in the next morning.
Winter and Zimmermann [14] consider daily dispatch problems of trams
in storage yards. Immediately on arrival, each tram has to be assigned
to a location in the depot and possibly to an appropriate round trip
of the next schedule period. Thereby, the dispatcher has to take into
account that different round trips may require different types of trams.
Winter and Zimmermann present binary program models for minimiz-
ing the amount of shunting and for minimizing the number of type
mismatches, i.e., the number of round trips to which a tram of wrong

5



type is assigned to. Additionally they consider the computational com-
plexity of different dispatch problems.
Hansmann and Zimmermann [10] consider sorting problems in rolling
stocks consisting of finding an optimal schedule for rearranging units
of rolling stock at shunting yards featuring a hump.

2 The Offline Problem

In the following we will differentiate the input instances of tmp be-
tween overlapping and non-overlapping instances. Therefore, for S ∈
S
n, let Ik = [first(S, k), last(S, k)] with k = 1, . . . , d denote the real

line interval that starts in first(S, k) and ends in last(S, k). Hence,
each S(i), k = 1, . . . , d can be uniquely identified with an interval Ik.
The family of all these intervals is denoted by IS .

Definition 2.1 (Interval graph associated with an input instance).
For a given instance S of tmp we denote by GS = (V,E) the interval
graph w.r.t. IS , where

• V = (I1, . . . , Id),

• Ik, Ij ∈ E with 1 ≤ k, j ≤ d if and only if Ik ∩ Ij 6= ∅.

Definition 2.2. Let S ∈ S
n. Then, two destinations 1 ≤ i, j ≤ d

do not overlap if last(S, i) < first(S, j) or last(S, j) < first(S, i).
Otherwise they do overlap. An instance S of tmp is called overlapping
if all destinations do pairwise overlap. Otherwise it is called non-
overlapping.

To check whether all destinations overlap needs O(n) time by com-
puting a maximum size clique in the corresponding interval graph GS

(the sorting of the intervals with respect to their left endpoints can be
accomplished in O(n) time since all values are in the range {1, . . . , n}).
If the instance is overlapping, the size of the maximum clique in GS ,
and d, the number of destinations, coincide.
Similarly, if we take the view on the input as an input sequence σ ∈
Σn, we can define the corresponding interval graph Gσ analogously.
Note that we can transform every tmp instance S ∈ S

n into an input
sequence σ ∈ Σn and vice versa in O(n) time.

Before we will give a first lower bound on the optimal solution K(S)
where S ∈ S

n, we note basic properties of ceiling functions and state
some obvious propositions.

Remark 2.1.

• If t ∈ N is even, we have ⌈ t−1
2 ⌉ = ⌈ t

2⌉ < ⌈ t+1
2 ⌉.

• If t ∈ N is odd, we have ⌈ t−1
2 ⌉ < ⌈ t

2⌉ = ⌈ t+1
2 ⌉.

Proposition 2.1. Let S ∈ S
n and S′ = {S(i1), . . . , S(ir)} with 1 ≤

i1, . . . , ir ≤ d be an arbitrary subset of S. Then we have K(S′) ≤ K(S).

Proof. Obvious, because every rearrangement of S is a feasible rear-
rangement of S′ as well.

6



2.1 Lower Bounds on Optimal Solutions

Here, we will establish some lower bounds on the optimal objective
value.

Theorem 2.1. Let S ∈ S
n be an overlapping instance. Then, we have

K(S) ≥ ⌈d+1
2 ⌉.

Proof. Let S ∈ S
n and O be an arbitrary permutation of 1, . . . , d which

represents an arbitrary ordering of the destinations of S in the final
train.
The assignment w.r.t. O of the cars to the tracks looks as follows:
At the beginning of the first round we place all cars from destination
O(1). Then we place all cars of O(2) beginning with car i ∈ S(O(2))
where i > last(O(1)) is smallest. Since the destinations do pairwise
overlap, the second round contains some elements of destination O(2)
as well. Otherwise S(O(1)) and S(O(2)) would not overlap. Then it
is O(3)’s turn. Now we have to do a case distinction: Either we are
able to place all its cars on the second round or its last car goes to the
beginning of the third round. But in both cases, after placing all cars
of O(3), we are in the same position as we have been placing all cars
of O(2). We proceed with the remaining destinations in an analogous
way. Obviously, we are able to string at most three destinations per
round together except for the first and last round where at most two
different destinations might occur. Figure 4 provides an illustration of
the above procedure.

first round 1 2 3 4 5 6 7

second round 1 2 3 4 5 6 7

third round 1 2 3 4 5 6 7

S(2)
︷ ︸︸ ︷

S(1)
︷ ︸︸ ︷

S(1)
︷︸︸︷

S(3)
︷︸︸︷

S(4)
︷︸︸︷

S(4)
︷ ︸︸ ︷

Figure 4 – Let S be an overlapping instance with d = 4 and
S(1) = {1, 6}, S(2) = {3, 5}, S(3) = {4} and S(4) = {2, 7}. If O =
(2, 1, 3, 4), the second round contains the first car of destination
1. Additionally the single element of S(3) and the last car of
destination 4 are placed in round 2.

We show by induction on d = d(S) that if we are able to place exactly
three destinations in one round by placing first the leftover of one des-
tination S(i), then a complete destination S(j) and then the beginning
of a third destination S(k) for i, j, k ∈ {1, . . . , d} on it, then we have
K(S) = ⌈d+1

2 ⌉. Otherwise K(S) becomes larger at best.
Now we suppose that O is such an ordering. Then we can assume that
all destinations S(O(k)) with odd O(k) are contained in exactly one
round. All destinations S(O(k)) with even O(k) are contained in two

7



rounds, i.e., its beginning at the end of one round and its end at the
beginning of the consecutive one.
If d = 1, we need exactly one classification track because all cars of the
train have the same destination. Thus we have K(S) = 1 = ⌈d+1

2 ⌉.

Now we assume thatK(S) = ⌈d+1
2 ⌉ where S = {S(1), . . . , S(d)}. Let S

be a partition of In with d+1 destinations. By induction hypothesis we
know that S̄ = {S(O(1)), . . . , S(O(d))} which is a subset of S together
with order O needs exactly ⌈d+1

2 ⌉ rounds. If d + 1 is even then we
know that we need another round to place them all. But then we have

K(S) = K(S̄) + 1 = ⌈
d+ 1

2
⌉+ 1

= ⌈
d+ 1

2
+ 1⌉ = ⌈

d+ 3

2
⌉

= ⌈
d+ 2

2
⌉.

The last equation is based on the fact that d+1 is even and Remark 2.1.
For odd d + 1 we know that no additional round is needed. Hence
together with Remark 2.1 we have

K(S) = K(S̄) = ⌈
d+ 1

2
⌉ = ⌈

d+ 2

2
⌉.

Before we state a first lower bound on K(S) for general instances S ∈
S
n we have to define a new parameter ω(S), called overlapping number,

characterizing the state of the overlapping of S.

Definition 2.3. Let S ∈ S
n and GS be the interval graph correspond-

ing to IS . Then the overlapping number ω(S) ∈ N is defined to be
the size of a clique of maximum cardinality in the interval graph GS

associated with S.
Analogously, we denote by ω(σ) the size of a clique of maximum car-
dinality in Gσ, i.e., ω(σ) = ω(S).

Theorem 2.2. For S ∈ S
n, we have

• ω(S) ≤ d, and

• K(S) ≥ ⌈ω(S)+1
2 ⌉.

Proof. The first part is obvious due to the fact that just d destinations
can cause the overlapping number.
For the second part, choose a maximum clique of size ω(S) in GS .
Now, let S′ be a partition obtained from S by deleting all destinations
S(k) which are not involved in this maximal overlapping of S, i.e.,
which are not contained in this maximum clique in GS . This means,
we reduce S to an overlapping instance S′ ∈ S

m with m ≤ n. Due to
Proposition 2.1 and Theorem 2.1, we get

K(S) ≥ K(S′) ≥ ⌈
d(S′) + 1

2
⌉ = ⌈

ω(S) + 1

2
⌉.

8



Dahlhaus and others investigated an upper bound on the optimal so-
lution which just depends on the number of cars. They proved in [2]
that K(S) ≤ ⌈n

4 + 1
2⌉ with S ∈ S

n. Together with Theorem 2.2, we
get some optimality results for special instances:

Proposition 2.2. Let S ∈ S
n. If ω(S) = ⌈n

2 ⌉, we have K(S) =

⌈ω(S)+1
2 ⌉ = ⌈n

4 +
1
2⌉. In particular, this holds for overlapping instances

with at most two cars per destination.

Proof. Let S be such a required instance. Then the margin between
upper and lower bound vanishes:

⌈
n

4
+

1

2
⌉ − ⌈

ω(S) + 1

2
⌉ ≤ ⌈

n

4
+

1

2
−

ω(S)

2
−

1

2
⌉

= ⌈
n

4
−

ω(S)

2
⌉

= ⌈
n− 2ω(S)

4
⌉ = 0.

Now, let us establish a lower bound on the optimal solutions that

dominates the bound ⌈ω(S)+1
2 ⌉ for S ∈ S

n. Therefore, we have to
define sub-instances S′ of S ∈ S

n which result from S by removing
elements of the destination sets:

Definition 2.4. Let S ∈ S
n. Then S′ = {S′(i1), . . . , S

′(ik)} is called
sub-instance of S if

• is 6= it ∀s 6= t, and

• S′(ik) ⊆ S(k).

In the following, we omit subsets of sub-instance S′ which are empty.

Definition 2.5. Two sub-instances D1 = {S′(i1), . . . , S
′(ik1

)} and
D2 = {S′(j1)), . . . , S

′(jk2
)} are disjoint if il1 6= jl2 for all l1 ∈ {1, . . . , k1}

and l2 ∈ {1, . . . , k2}.

Additionally, we have to classify tracks in open and closed tracks
by considering the destination of its last car. Therefore, we have
to remember that a feasible assignment for S ∈ S

n is a mapping
tr : {1, . . . , n} → {1, . . . , d}.
Assuming that the first l ≤ n cars are already assigned to tracks, we
define a partial assignment by restricting the domain of tr to {1, . . . , l}.

Definition 2.6. Let tr be a partial assignment of the first l cars and
i ∈ tr(L) with L = {1, . . . , l}. Then track i is called closed, if

• its last car has destination k, i.e., last(i) ∈ S(k) and

• there exists another track j 6= i with j ∈ tr(L) and first(j) ∈
S(k).

9



Definition 2.6 comprises all tracks whose last car belongs to a split
destination. The naming is based on the fact that we are not able
to unite destination k to a block at the final train if we assign car
j > last(i) with another destination to closed track i.
To obtain a lower bound on the optimal solutions, we determine two
disjoint sub-instances. Then, with the help of their overlapping num-
bers, we can state the following result:

Theorem 2.3. Let S ∈ S
n and

D1 = {S′(i1), . . . , S
′(ik)} and D2 = {S′(j1), . . . , S

′(jl)}

two disjoint sub-instances, such that the last car of D1 is being sent

before the first car of D2. Then we have K(S) ≥ ⌈ω(D1)+ω(D2)
2 ⌉.

Proof. Let ω(D1) := k1 and ω(D2) := k2. Let opt be an optimal
rearrangement of S ∈ S

n using K(S) tracks. Additionally, we suppose
that opt has already used a ≤ K(S) tracks after the last car of D1

has been assigned. But then, due to the Pigeonhole Principle we know
that k1 − a destinations are split. Thus, k1 − a tracks are closed after
assigning all cars of D1, so that K(S)− (k1−a) tracks can be used for
the remaining sequence, in particular for assigning the cars of D2.
Since K(S) − a tracks are still empty, we can use them to split desti-
nations which yields at most K(S)− a split destinations.
So opt needs at least k2 − (K(S)− a) tracks. Since K(S)− k1 + a are
left, it results in

k2 −K(S) + a ≤ K(S)− k1 + a

⇒ k1 + k2 ≤ 2K(S)

⇒
k1 + k2

2
≤ K(S)

⇒ ⌈
k1 + k2

2
⌉ ≤ K(S). (1)

Inequality (1) holds because of the integrality of K(S).

To show that the condition of D1 and D2 being disjoint is crucial,
consider instance

S = {S(1), S(2), S(3), S(4), S(5)} = {{1, 10}, {2, 5}, {3, 4}, {6, 9}, {7, 8}}

with

D1 := {S(1), S(2), S(3)} and D2 := {S(4), S(5)}.

Note that ω(D1) = 3 and ω(D2) = 2. Applying the previous theorem,
a lower bound on the necessary sorting track would be

K(S) ≥ ⌈
ω(D1) + ω(D2)

2
⌉ = ⌈

3 + 2

2
⌉ = 3.

As can be seen easily, using permutation π = (2, 4, 1, 3, 5) of the desti-
nations, we just need two tracks for the rearrangement of S.

10



Now, consider S = {{1, 4}, {2, 7}, {3, 5, 10, 13}, {6, 9, 12}, {8, 11}} with

D1 = {S(1), S(2)} and D2 = {S(3), S(4), S(5)}.

By Theorem 2.3 we get K(S) ≥ 3. Furthermore we have ω(S) = 3
which results in 3 ≤ K(S) ≤ 3. So S can be rearranged optimally
using 3 tracks.

As the lower bound of Theorem 2.3 depends on the choice of the two
sub-instances D1 and D2, we wish to find two sub-instances such that
the resulting lower bound is maximized. Next we show that it is pos-
sible to find such optimal sub-instances within polynomial time.
Note that the disjointness property of D1 and D2 ensures that there
must be a certain car c, such that D1 ends before or at last with c and
D2 starts after c.
The idea is now to divide the problem instance S ∈ S

n into, not
necessarily disjoint, sub-instances D1 = {S′(1), . . . , S′(d)} and D2 =
{S′(1), . . . , S′(d)} at every possible position (car) i = 1, . . . , n in the
following way: Let i ∈ {1, . . . , n}. For all k = 1, . . . , d we have

c ∈ S′(k) ⊂ D1 ⇔ c ≤ i and c ∈ S(k), (2)

c ∈ S′(k) ⊂ D2 ⇔ c > i and c ∈ S(k). (3)

Then, we can list the set of inclusionwise maximal cliques of GD1
and

GD2
, denoted by M1 and M2. Remember that a clique of cardinality

z corresponds to a set of destinations whose overlapping number is z.
Since we are just interested in maximizing ω(D1) + ω(D2) where any
destination may only appear in one of the sub-instances, we have to
find the pair (m1,m2) ∈ M1 ×M2 that maximizes ω(m1) + ω(m2) −
ω(m1 ∩m2).
For each interval graph we can list all maximum cliques in O(n2)
time [9]. Additionally we have to run through O(n) positions (cars),
each time comparing O(n2) pairs of maximum cliques. Calculating the
number of shared destinations for each pair of maximal cliques can be
done in O(n) time. This yields a total running time of O(n5) for the
clique bound algorithm.

11



Algorithm 1 clique bound

Require: S ∈ S
n

Ensure: lower bound l
1: l = 0
2: for i = 1 . . . n do

3: Divide S into D1 and D2 at position i due to (2) and
(3)

4: Find all maximal cliques in GD1
and GD2

and store
them in M1 and M2, respectively.

5: for (m1,m2) ∈ M1 ×M2 do

6: l = max(l, ω(m1) + ω(m2)− ω(m1 ∩m2))
7: end for

8: end for

9: return l

3 The Online Scenario

Information about the number of cars arriving at the yard and their
destinations, is the most important component for all computational
tasks. Now we focus on the online version of tmp where the input is
given piece by piece and is thus not available from scratch. This turns
out to be a more realistic demonstration of railway life since interaction
between all participants is proved to be difficult.
Hence, we consider the problem of computing a rearrangement of the
freight cars with incomplete information and try to find a good online
algorithm. To compare different online algorithms we need some kind
of performance measure. In the field of online computation the method
of competitive analysis, proposed by Borodin and El-Yaniv [1], has
been established as one of the most successful ways to analyze the
quality of an online algorithm. In competitive analysis we compare
the results of the online algorithms with the optimal offline results,
i.e., the best possible solution if we know all information in advance.

Definition 3.1. A deterministic online algorithm alg is said to be
c-competitive, if for every instance σ we have

alg(σ) ≤ c · opt(σ) + α.

The competitivity of alg is the minimum over all c, such that alg is
c-competitive.

Our goal will be to provide competitive algorithms with good compet-
itivity. But before, we want to show the necessity of the information
if an arriving car is the last car of its destination or not.

Theorem 3.1. There is no competitive deterministic online algorithm
if the online algorithm does not have any information whether a car is
a last car of its destination or not.

12



Proof. Assuming the opposite, let alg and opt be a c-competitive and
optimal algorithm for tmp, respectively. Note that we do not have any
“last car” information. Then there exists a constant α with

alg(σ) ≤ c · opt(σ) + α.

Consider σ ∈ Σn of the form σ = (1, 2, . . . , n). Obviously K(σ) = 1
and due to assumption alg(σ) ≤ c · 1 + α.

Now, consider σ ∈ Σ2n with σ = (1, 2, . . . , n, 1, 2, . . . , n). Then alg

needs for the first n cars less than c + α tracks. But if n > 2(c +
α), there exists at least one track where an incomplete destination is
positioned between two other destinations. Since we allow just one
pull-out operation, the final rearrangement will be infeasible. Hence,
the claim follows.

Greedy strategies are interesting because they are typically fast and use
a small amount of memory. Now, let us consider an elementary greedy
algorithm for the Train Marshalling Problem, denoted by greedy.
The main idea is to assign the arriving car c to a track whose last
car has the same destination as c has. If there is no track with this
property, we send c to a track whose last car has a destination which is
already complete. If no such track exists, we must open a new sorting
track.

13



Algorithm 2 greedy

Require: σ ∈ Σn

Ensure: feasible assignment tr of σ
1: ω = 0 {overlapping number}
2: tempω = 0 {temporary overlapping number}
3: C = ∅ {set of available colors}
4: for i = 1 . . . n do

5: if i = first(σ, σi) then
6: tempω ++
7: if u < tempω then

8: ω ++
9: C = C ∪ {ω}

10: end if

11: tr(i) = c with c ∈ C
12: C = C \ {c}
13: end if

14: if i = last(σ, σi) then
15: tempω −−
16: C = C ∪ {tr(i)}
17: end if

18: if i 6= first(σ, σi) and i 6= last(σ, σi) then
19: tr(i) = tr(j) with i > j and σi = σj
20: end if

21: end for

22: return tr : {1, . . . , n} → {1, . . . , ω}

Note that we can find an optimal coloring of the interval graph Gσ in
linear time by using a greedy algorithm which considers the vertices in
sequence and assigns each vertex its first available color [11].
Graph coloring assigns two different colors to adjacent vertices. Since
these two vertices correspond to two overlapping destinations, they
have to be assigned to different tracks. Thus, we get the following
Corollary:

Corollary 3.2. Every solution of tmp where we prohibit to split des-
tinations and the solutions of the graph coloring problem in the corre-
sponding interval graphs coincide.

Corollary 3.3. greedy outputs exactly ω(σ) tracks for σ ∈ Σn.

Theorem 3.4. greedy has a competitive ratio of at most 2.

Proof. Let σ ∈ Σn. Then we get

14



greedy(σ)

opt(σ)
≤

ω(S)

⌈ω(σ)+1
2 ⌉

≤
2 · ω(σ)

ω(σ) + 1

<
2 · ω(σ)

ω(σ)
= 2

The analysis of the greedy-type heuristics for tmp is quite easy. Now,
we will show that its competitiveness is in fact the best competitiveness
we can achieve for deterministic online algorithms.

Our lower bound construction works inductively. Assuming that an
online algorithm has already assigned the first n arriving cars, we need
to define an extension of σ ∈ Σn by the next arriving car σn+1.

Definition 3.2. σ′ ∈ Σn+1 is called an extension of σ ∈ Σn by car
σn+1 ∈ N if σ is a subsequence of σ′ that can be derived from σ′

by deleting the last element and without changing the order of any
element.
Analogously, for S ∈ S

n, either we add n + 1 to one of the already
existing destination sets S(1), . . . , S(d) (car n + 1 is not the first car
with this destination) or enlarge the number of destinations by adding
S(d+ 1) = {n+ 1} (car n+ 1 is the first car of its destination).

Let alg be an arbitrary deterministic online algorithm which outputs
an assignment of σ. Then, we denote by alg(σ) the set of all used
tracks for rearranging σ. The number of closed tracks of the problem
solution alg(σ) is denoted by C(alg(σ)). Furthermore, D2(alg(σ))
states the number of tracks where two cars are already assigned to.

Now, we will construct an instance with at most two cars per destina-
tion piece by piece based on the assignment decisions we made so far.
At each step of this construction, we make sure that

(1) |T | ≤ 2 ∀ T ∈ alg(σ),

(2) T ∈ C(alg(σ)) if last(T ) is the second car of destination σlast(T ).

In order to simplify and shorten the notation, we combine both types
of input instances. That means, if we want to express, how many cars
of a certain destination σi have already been sent, we use |S(σi)|. Then
the above conditions read as follows:

(1) |T | ≤ 2 ∀ T ∈ alg(σ),

(2) T ∈ C(alg(σ)) if |S(σlast(T ))| = 2. (4)

Note that σ stands for the sequence of cars arrived so far. That means
that there are at most two cars per track and any track that ends

15



with a car of a destination where both cars are already sent, is closed.
Obviously, this implies that two cars on the same track have to vary in
destinations. Otherwise, this track would not be closed. Furthermore,
we will make sure that in any step of the instance construction either
one of the two following conditions hold:

C(alg(σ)) = D2(alg(σ)) (5)

or

(1) ∃ T ∈ alg(σ) : alg(i) = T = alg(j), i = first(T ), |S(σi)| = 1

(2) D2(alg(σ)) = C(alg(σ)) + 1. (6)

Item (1) in condition (6) states that there exists a track with two cars
and which first car is of a destination whose second car is not sent yet.

Lemma 3.5. Let alg be a deterministic online algorithm and σ ∈ Σn

be an instance satisfying conditions (4) and (6). Then there exists an
extension σ′ also satisfying condition (4) and either condition (5) or
(6). Furthermore, σ′ will satisfy C(alg(σ′)) = C(alg(σ)) + 1.

Proof. Let T be the track given by point 1 in condition (6) with
σfirst(T ) = k. Now extend σ to σ′ by sending car n+1 with σn+1 = k.
It is not possible that alg assigns car n + 1 to track T due to the
resulting infeasible rearrangement. Thus we know alg(n + 1) = T ′

with T ′ 6= T . Then T ′ must be closed due to definition and we get
C(alg(σ′)) = C(alg(σ)) + 1. Additionally we know that |T | ≤ 2 due
to the argument above. Hence we have verified condition (4).
To satisfy one of conditions (5) or (6), we have to make a case distinc-
tion:

Case 1: D2(alg(σ′)) = D2(alg(σ)), i.e., n+1 is the only car on track
T ′. Since condition (6) holds for σ, we have

D2(alg(σ′)) = D2(alg(σ))

= C(alg(σ)) + 1

= C(alg(σ′)),

which fulfills condition (5).

Case 2: D2(alg(σ′)) = D2(alg(σ))+1, i.e., there are two cars assigned
to track T ′. But this implies

D2(alg(σ′)) = D2(alg(σ)) + 1

= C(alg(σ)) + 2

= C(alg(σ′)) + 1.

Hence it remains to verify item 1 of condition (6). Assuming the op-
posite, i.e., i, n + 1 ∈ alg(T ′) with |S(σi)| = 2, T ′ would be a closed
track due to conditions (4) before adding car n + 1. Thus, assigning
n+ 1 to track T ′ would be infeasible which completes the proof.

16



Lemma 3.6. Let alg be a deterministic online algorithm. Then for
any d ∈ N there exists an instance σ ∈ Σk with k ≤ 2d and d(σ) = d =
|alg(σ)|.

Proof. Let d be the number of destinations of an instance of tmp. Then
we will proceed by induction on d and show that for all d ∈ N there
exists a sequence σ which satisfies conditions (4) and (5) (Induction
Hypothesis).

For d = 1, the only possible instance is σ = (σ1, σ2) with σ1 = σ2.
Hence the hypothesis is true.

Let us now assume that the claim holds for d ≥ 2. Thus, we can find
a sequence σd with d destinations fulfilling both conditions.

Extending σd by car c with destination d+ 1 results in sequence σd+1

with one more car and one new destination. Consider the track T ∈
alg(c) to which c is assigned.
Since |S(σc)| = 1 and all other tracks remain unaffected, item 2 of
condition (4) is still valid and T /∈ C(alg(σd+1)), i.e., T is not a closed
track. The solution of alg is not feasible if there are 3 cars upon T
since we already know that the first two cars have to be different in
destinations. This completes condition (4).

It remains to show that σd+1 fulfills condition (5). Since c is the first
car of its destination, the number of closed tracks remains the same,
i.e.,

C(alg(σd+1)) = C(alg(σd)).

Now let us consider the following case distinction in D2.

Case 1: D2(alg(σd+1)) = D2(alg(σd)). Then, due to the induction
hypothesis, we have

D2(alg(σd+1)) = D2(alg(σd)) = C(alg(σd)) = C(alg(σd+1))

and we are done with condition (5).

Case 2: D2(alg(σd+1)) = D2(alg(σd)) + 1. Analogously, this yields

D2(alg(σd+1)) = D2(alg(σd)) + 1 = C(alg(σd)) + 1

and point 2 of condition (6) is verified.

Additionally, due to our assumptions, we know that there are two cars
assigned to T with first(T ) = x and last(T ) = c. Since T was not a
closed track in alg(σd) (otherwise we had not been allowed to pull c
upon T ), we get

|S(σx)| = 1,

i.e., the second car of destination of car x has not been sent yet. This
completes condition (6).

17



Then, by Lemma 3.5, we know that there exists an extension σ′

d+1

which exhibits the same number of destinations by sending just cars
with destinations whose first car is already sent (see proof). This
means, applying this lemma, we have two possible outcomes. Either we
find an enlarged instance which satisfies conditions (4) and (5) and we
are done, or we find a sequence which fulfills conditions (4) and (6). But
this allows us to apply Lemma 3.5 again. Hence, we recursively build an
extension with constant number of destinations fulfilling condition (5).
We know, that by applying this lemma and thus sending a second car
of a destination, the number of closed tracks increases by one. Hence,
we are just able to apply it while we have at most d+ 1 closed tracks
since the instance exhibits just d+1 destinations. So, at the latest if we
have build an instance with exactly two cars per destination, condition
(5) is verified. This finishes the induction.

So, for all d ∈ N there exists an instance σd such that

D2(alg(σd)) = C(alg(σd)). (7)

This implies, that d − C(alg(σd)) destinations are still incomplete,
which yields

n = 2 · C(alg(σd)) + d− C(alg(σd)) = C(alg(σd)) + d (8)

cars. Additionally we know that two cars are assigned to exactly
D2(alg(σd)) tracks, which results due to equations (7) and (8) in

n− 2 ·D2(alg(σd)) = d− C(alg(σd))

tracks with just one car. So, in total we get

|alg(σd)| = D2(alg(σd)) + d− C(alg(σd)) = d

tracks.

Note that the proof does not necessarily find an instance with exactly
two cars per destination.

Theorem 3.7. There exists no deterministic online algorithm with
competitive ratio smaller than 2.

Proof. Let d = 2k−1 ∈ N. Then by Lemma 3.6, we can find an instance
σd with d = |alg(σd)|. Since σd does not need to have exactly two
cars per destination, we know that there exists an extension σ ∈ Σ2d

with |alg(σd)| ≤ |alg(σ)|.

Due to the upper bound on the optimal solution of Dahlhaus et al. [2],
we also know

K(S) ≤ ⌈
2(2k − 1)

4
+

1

2
⌉ = ⌈

4k − 2

4
+

1

2
⌉ = ⌈k −

1

2
+

1

2
⌉ = k.

Due to limk→∞

2k−1
k

= 2, we get what we wanted to show.

18



4 Experimental Results

To get a feeling for the practical performance of the lower bounds and
the online algorithm presented in this work, we implement them and
analyze the performance for randomly generated instances.

We perform some computational experiments for 100 uniformly and
independently chosen problem instances (for more information on this
topic, see the Appendix).

To solve the Train Marshalling Problem to optimality, we developed a
two-level procedure. The first level consists of relaxing requirements on
feasible solutions of tmp. We solve the resulting integer program which
turns out to be solvable in polynomial time for some special cases (see
forthcoming PhD thesis of Katharina Beygang). The solution provides
an upper and lower bound on the optimal solutions of the original
problem. In some cases these bounds coincide, so that the optimal
solution of tmp is found. Otherwise we run the second level taking
advantage of these bounds.
In the following, lC denotes the here presented lower bound on the
optimal solution.

The relative error is defined as the absolute error (absolute value of
the difference between optimal and computed value) divided by the
optimal value. Here, it is expressed in percentage. The relative error
of the lower bound lC and heuristic greedy can be seen in Figure
5. Regardless of the number of cars, the relative error of lC ranges
consistently between 0 and 20% while the heuristic always yields a
larger deviation of the observed output from the optimum. Thus, the
performance of the lower bounds w.r.t. the relative error, is much
better than greedy’s.

This effect can also be seen in Table 1, considering the average de-
viation, i.e., the average of absolute errors. Here, the average and
standard deviation for randomly generated instances, each of 50, 100
and 200 cars, is displayed in columns two to six, respectively. The
standard deviation is a statistical value that shows how much varia-
tion there is from the average deviation. If the outputs are tightly
bunched together, the standard deviation is small. If they are widely
spread, the standard deviation is larger.
Here, observe the sharper concentration of lC , simultaneously with the
smaller average deviation, independent of the length n of the instances.

All computations were executed on a compute-server equipped with a
Dual Intel Xeon 3.2GHz CPU and 4 GB RAM, running Linux Kernel
2.6.5 SMP. Programming framework for generating the instances was
Perl, version 5.8.3. Lower bound lC is implemented in Java Code
compiled on JRE 1.5.0. Determining an optimal solution of tmp is
done with solver suite IBM ILOG OPL 6.3, IBM ILOG CPLEX 12.1.0.

19



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

instances

%

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

instances

%

 

 

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

instances

%

Figure 5 – Relative error ([%], y-axis) of greedy (dashed line)
and lC (dark line) for a sample of 100 randomly generated instances
(x-axis) with n = 50, 100 and n = 200 cars (from top to bottom).

In Table 2, we present the maximum, minimum and average CPU run
time of computing an optimal solution and lower bound lC , as well as
running greedy.
As expected, for increasing length n, the running time of greedy

and the computation of lC do not increase as much as the time for
determining the optimal rearrangement.

20



n = 50 n = 100 n = 200

dmed σ dmed σ dmed σ

lC 0.86 0.72 1.62 0.85 3.28 1.22

greedy 3.99 1.46 8.05 1.84 15.82 2.58

Table 1 – Average deviation dmed from optimum and standard
deviation σ of introduced bound lC and heuristic greedy.

n 50 100 150 200

min
lC 0.12 0.15 0.17 0.19
greedy 0.02 0.03 0.06 0.09
opt 0.08 0.23 0.51 1.09

max
lC 0.14 0.18 0.21 0.32
greedy 0.03 0.04 0.06 0.17
opt 0.87 8.12 80.93 3033.36

∅

lC 0.13 0.17 0.18 0.21
greedy 0.02 0.03 0.06 0.1
opt 0.35 3.40 28.69 174.19

Table 2 – Minimum, maximum and average CPU run time of
computing the optimal solution, lC and of running greedy for
100 randomly generated instances, each with n cars.

5 Conclusions

We have provided a new polynomial time computable lower bound for
optimal solutions in the offline version of tmp. The bound is based
on graph theoretical methods and searches for inclusionwise maximal
cliques in interval graphs. Furthermore, we considered the online ver-
sion of tmp and showed that, from the viewpoint of competitive anal-
ysis, the best deterministic algorithm is a greedy-type algorithm which
outputs a rearrangement using at most twice s many sorting tracks
as necessary. When comparing the lower bound and heuristic experi-
mentally, we determined that the lower bound tends to have a smaller
relative/ absolute error w.r.t. the optimal value K(S) than the output
of the greedy heuristic.

There are still several questions that remain non-highlighted or unan-
swered in this paper, i.e.,

• What is a lower bound on the competitiveness of randomized on-
line algorithms? Is there any randomized online algorithm which
is better than 2-competitive?

• Are there any problem instances and problem restrictions which
make the problem solvable in polynomial time?

• How does the 2-level procedure for solving tmp look like?

21



References

[1] Alan Borodin and Ran El-Yaniv. Online Computation and Com-
petitive Analysis. Cambridge University Press, 1998.

[2] Elias Dahlhaus, Peter Horak, Mirka Miller, and Joseph F. Ryan.
The train marshalling problem. Discrete Applied Mathematics,
103(1-3):41 – 54, 2000.

[3] Elias Dahlhaus, Fredrik Manne, Mirka Miller, and Joe Ryan. Al-
gorithms for combinatorial problems related to train marshalling.
In Proceedings of AWOCA 2000, Hunter Valley, pages 7–16, 2000.

[4] Gabriele Di Stefano and Koči Magnus L. A graph theoretical
approach to the shunting problem. Theoretical Computer Science,
92:16–33, 2004.

[5] Gabriele Di Stefano, Jens Maue, Maciej Modelski, Alfredo
Navarra, Marc Nunkesser, and John van den Broek. Models for re-
arranging train cars. Technical Report ARRIVAL-TR-0089, AR-
RIVAL Project, November 2007.

[6] Shimon Even and Alon Itai. Queues, stacks, and graphs. In Zvi
Kohavi and Azaria Paz, editors, Theory of Machines and Com-
putations: International Symposium on the Theory of Machines
and Computations, pages 71–86. Academic Press, Inc., 1971.

[7] Michael R. Garey and David S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman & Co., New York, NY, USA, 1979.

[8] Michael Gatto, Jens Maue, Matús Mihalák, and Peter Widmayer.
Shunting for dummies: An introductory algorithmic survey. In
Ravindra K. Ahuja, Rolf H. Möhring, and Christos D. Zaroliagis,
editors, Robust and Online Large-Scale Optimization, volume 5868
of Lecture Notes in Computer Science, pages 310–337. Springer,
2009.

[9] Udaiprakash I. Gupta, Der T. Lee, and Joseph Y-T. Leung. Ef-
ficient Algorithms for Interval Graphs and Circular-Arc Graphs.
Networks, 12(4):459–467, 1982.

[10] Ronny S. Hansmann and Uwe T. Zimmermann. Optimal sorting
of rolling stock at hump yards. In Hans-Joachim Krebs and Willi
Jäger, editors, Mathematics, Key Technology for the Future, pages
189–203. Springer Berlin Heidelberg, 2008.

[11] Sven O. Krumke and Hartmut Noltemeier. Graphentheoretische
Konzepte und Algorithmen. Teubner Verlag, Mai 2005.

[12] Gian-Carlo Rota. The number of partitions of a set. The American
Mathematical Monthly, 71(5):pp. 498–504, 1964.

[13] Robert E. Tarjan. Sorting using networks of queues and stacks.
Journal of the ACM, 19(2):341–346, 1972.

[14] Thomas Winter, Uwe T. Zimmermann, Abteilung für Mathema-
tische Optimierung, and TU Braunschweig. Real-time dispatch of
trams in storage yards. Annals of Operations Research, 96:287–
315, 2000.

22



A Appendix

To generate instances for the computational analysis, we use the dis-
crete uniform distribution on Σn where n is fixed.
Additionally, let (Σn,PΣn

, P ) be the probability space, where Σn is
the domain, (Σn,PΣn

) is a measurable space, PΣn

are all measurable
subsets of Σn and P is the measure on PΣn

with

P (Σn) = 1 and P (σ) =
|σ|

|PΣn |
.

Note that the discrete uniform distribution is a probability distribution
for which the probability of occurrence is the same for all values of Σn.

We will calculate P recursively. Therefore, consider Σn with n =
3. Without loss of generality, we can assume that the first car has
destination 1, the second destination is denoted by 2 and so on.

1

11

111 112

12

121 122 123

one car

two cars

three cars

Figure 6 – Construction of Σ3.

PΣ3

contains 5 possible outcomes. Obviously, for each car in σ, we can
either choose one of the destinations already sent (number of destina-
tions stays the same) or we add a new destination.

Let P (d, l) denote the number of instances where the first l cars use d
destinations. Then, we conclude

Theorem A.1. P (d, l) = P (d+1, l+1)+ d ·P (d, l+1) for d ≤ l and
P (d, l) = 1 for l ≥ n.

Proof. For l = n, P is correct due to definition. Even the other part
(l < n) is easy since we only have to consider the case of choosing a new
destination d+1 or of choosing one of the d already used destinations.
If we add the new destination, we are done with P (d+ 1, l + 1). If we
choose one of the already used d destinations, we are left with P (d, l+1)
possibilities. Thus, we are done.

23



1

11

111 112

12

121 122 123

P (1, 1) = 5

P (1, 2) = 2 P (2, 2) = 3

P (1, 3) = 1 P (2, 3) = 3 P (3, 3) = 1

Figure 7 – Survey of P (d, l) with n = 3.

Now, we are able to determine P (d, l) for every d ≤ l. As there are
less than n2 possible values for P , this can be done in O(n2) time
(Algorithm 3) by generating a table of all values.
Now we can use P to generate a uniform random sequence (σ1, . . . , σn)
car by car with σ1 = 1. We just need to keep track of i and d denoting
the current considered car and the number of already used destina-
tions respectively, and look up the respective values of P we generated
before. Algorithm 4 decides for each car i whether we attribute an
already open (used) destination to i or not. In the latter case, i gets
destination d+ 1. The probability to choose an already used destina-

tion is calculated as d·P (d,l)
P (d,l−1) , i.e., the number of possibilities we would

have after assigning an “old” destination to car i divided by the total
number of possibilities. In case we decide for one of the old destina-
tions, we choose σi uniformly from {1, ..., d}. Note that once we have
calculated P we can generate uniform random instances in linear time.

We can also look at these results in the following way: As every problem
instance S ∈ S

n is a partition of the set {1, 2, ..., n} and the procedure
above can generate any partition of this set with equal probability, we
have found a method of drawing uniformly a random partition of the
set {1, ..., n}. Additionally, P (1, 1) gives the total number of possible
set partitions of a set of size n. Hence, it is equal to the n-th Bell
number Bn [12].

24



Algorithm 3 p-calculator

Require: n ∈ N

Ensure: P (d, l) for all d, l
1: for all l = n, n− 1, . . . , 1 do

2: for all d = 1, . . . , l do
3: if l < n then

4: P (d, l) = P (d+ 1, l + 1) + d · P (d, l + 1)
5: else

6: P (d, l) = 1
7: end if

8: end for

9: end for

10: return P (d, l) for all d, l

Pseudocode 4 uses the expression rand as a random number between 0
and 1 and uniform as the discrete uniform distribution over {1, . . . , d}.

Algorithm 4 instance-generator

Require: n ∈ N

Ensure: σ = (σ1, . . . , σn)
1: d = 1{number of destinations}
2: σ1 = 1
3: for all i = 2, 3, . . . , n do

4: if rand < d·P (d,i)
P (d,i−1) then

5: σi = uniform(1, . . . , d)
6: else

7: d = d+ 1
8: σi = d
9: end if

10: end for

11: return σ

25


