
T R A I N M A R S H A L L I N G P R O B L E M S - A L G O R I T H M S A N D
C O M P L E X I T Y

florian dahms

Diplomarbeit

Supervisor: Prof. Dr. Sven O. Krumke

December 2010



Florian Dahms: Train Marshalling Problems - Algorithms and Com-
plexity, Diplomarbeit, © December 2010



A B S T R A C T

The goal of train marshalling is to rearrange an incoming train in
such a way, using a marshalling yard, that it fulfills certain prop-
erties when leaving the yard. In this thesis we will consider the
train marshalling problem proposed by Dahlhaus et al. [5]. Here
we want to sort an incoming train to blocks of the same desti-
nation using only one classification step and a minimal number
of sorting tracks, while being able to choose the order of the
destinations freely.

We will state some basic properties of this NP-hard problem
and derive some upper and lower bounds on the optimal ob-
jective value. For these we will apply some interesting results
from graph theory. Also we will analyze easily solvable problem
instances and state algorithms to solve them in polynomial time.

Furthermore we will discuss the corresponding online prob-
lem, where we will provide an optimal deterministic online al-
gorithm in terms of competitive analysis. Also we will look at
some kind of average case performance of the algorithms and
bounds using uniform random instances.

From the results obtained so far we will then propose further
results for variations of the original problem, such as restricting
the number of sorting tracks, introducing an auxiliary track or
allowing multiple sorting steps.

iii





Gebraucht der Zeit, sie geht so schnell von hinnen,
doch Ordnung lehrt euch Zeit gewinnen.

— Johann Wolfgang von Goethe

A C K N O W L E D G M E N T S

It is a pleasure to thank all those how made this thesis possible.
First of all I owe my gratitude to my supervisor Prof. Dr. Sven

Oliver Krumke as well as Katharina Beygang for their great guid-
ance and support.

And I want to thank my parents, who made all this possible,
for all their encouragement throughout the time.

v





C O N T E N T S

1 introduction 1

1.1 Overview 1

1.2 Other train sorting problems 3

1.3 Basic definitions 3

1.3.1 Problem instances and solutions 4

1.3.2 Sub-instances 8

1.3.3 Interval graphs and overlappings 10

1.3.4 Algorithms 11

2 offline problem 13

2.1 IP Formulation 13

2.2 Bounds 15

2.3 Easy instances 23

2.3.1 Pair instances with maximal overlapping
destinations 23

2.3.2 Instances with large disjoint sub-instances 25

2.3.3 Fixed number of destinations 26

2.3.4 Fixed overlappings 26

3 online problem 29

3.1 Introduction to online computation and competi-
tive analysis 29

3.2 Lower bound for det. online algorithms 31

3.3 Algorithms 40

3.3.1 Split 40

3.3.2 Unsplit 42

3.4 Randomized online algorithms 43

4 computational results 47

4.1 Underlying Probability Space 47

4.2 Results 50

5 problem variations 55

5.1 Fixed number of tracks 55

5.1.1 Offline Problem 55

5.1.2 Online Problem 56

5.2 Using an auxiliary track 57

5.3 Multiple sorting steps 59

6 conclusions 63

6.1 Open questions 63

bibliography 65

vii



L I S T O F F I G U R E S

Figure 1 Schematic hump yard [11] 1

Figure 2 Schematic hump yard with exit track 2

Figure 3 Example of sorting an incoming train ac-
cording to the Train Marshalling Problem
(TMP) model 2

Figure 4 An example for an interval graph with the
corresponding intervals 11

Figure 5 Example for Algorithm 2 17

Figure 6 Example for necessity of complete separa-
tion of D1 and D2 21

Figure 7 Example for Theorem 2.11 21

Figure 8 Example for the first four cars of the ma-
licious sequence depending on the choices
of the algorithm 39

Figure 9 Malicious problem instance for the Split al-
gorithm 42

Figure 10 Possible choices for S1 and S2 45

Figure 11 Possibilities when generating a sequence in
S3 48

Figure 12 Comparing bound and algorithm results
for 100 instances in S50 53

Figure 13 Comparing bound and algorithm results
for 100 instances in S100 53

Figure 14 Schematic hump yard with auxiliary track
of capacity m 58

Figure 15 Example for multiple sorting steps 61

L I S T O F TA B L E S

Table 1 Comparision of bounds and algorithms for
n = 50 54

Table 2 Comparision of bounds and algorithms for
n = 100 54

viii



L I S T O F A L G O R I T H M S

1 Calculate a solution from a permutation of the
destinations . . . . . . . . . . . . . . . . . . . . . . . 6

2 Algorithm for optimal destination coloring . . . . . 16

3 Determine optimal bound for Theorem 2.11 . . . . 23

4 Algorithm to determine optimal solution for in-
stances from Corollary 2.15 . . . . . . . . . . . . . . 24

5 The Split algorithm . . . . . . . . . . . . . . . . . . . 41

6 The Unsplit algorithm . . . . . . . . . . . . . . . . . 43

L I S T I N G S

Listing 1 Matlab code to generate a table with values
for the possibility function P 49

Listing 2 Matlab code to generate uniformly distributed
random instances of length n 50

A C R O N Y M S

TMP Train Marshalling Problem

IP Integer Program

ix





1
I N T R O D U C T I O N

1.1 overview

When considering railway logistics an important problem that
naturally arises is the problem of shunting or marshalling rail-
way cars. This means we need to find a list of instructions how to
rearrange railway cars in a classification yard so that they form
new trains according to certain specifications. Of course this
needs to be done efficiently to reduce the necessary amount of
resources (like time, space, the number of couplings and decou-
plings, etc.). In the following we will construct a certain model
for this problem and present the results we obtained in the anal-
ysis of this specific problem. But first we will give a general in-
troduction into the functioning of shunting yards.

Figure 1: Schematic hump yard [11]

Shunting trains is
usually done in
hump yards

A very common form of classification yards are so called hump
yards (a schematic hump yard can be seen in figure 1). The hump
yard mainly consists of one incoming track that leads over a
hill/hump (B), followed by several switches (C) and the classifi-
cation tracks (D). Shunting the cars is now done by slowly push-
ing the decoupled cars over the hump. After a car crosses the
tipping point it will roll down the hump by itself and is guided
to its allocated track using the (mostly automated and remotely
controlled) switches.

For illustration purposes we will also assume, that after the
classification tracks we have one outbound exit track on which
the cars will be pulled after they have been sorted (see figure 2).

In the European railway network the coupling and decoupling
of cars is still done by hand as automatic hooks have not been
introduced yet [6]. This makes coupling/decoupling a time con-
suming task that should be performed as little as possible. Bear-

1



2 introduction

Figure 2: Schematic hump yard with exit track

ing this in mind when constructing our model we will restrict
ourselves to exactly one classification step. This way we only
need to couple and decouple every car exactly one time.We will allow only

one humping step as
couplings are time

consuming

To make this more specific, the model will be to decouple all
the cars on the incoming track, place them on their respective
classification track, then couple all the cars on one classification
track, pull out all cars from each track to the exit track where the
outbound train will be joined together. The goal of the sortingGoal: Sort train by

destinations with
minimal sorting

tracks

process will be to arrive at a final train, where cars are sorted by
destinations, i.e. cars that were assigned for the same destination
appear in a connected order, while minimizing the number of
necessary sorting tracks. In the following we will denote this
model as TMP.

As the available space in the hump yard is a limited resource
minimizing the necessary amount of it obviously makes sense,
especially as the time components like shunting steps and num-
ber of couplings are already fixed to a be small.

12341243541

223

34441

115

22334441115

Figure 3: Example of sorting an incoming train according to the TMP

model

In figure 3 we see an example of how such a sorting process
might work. First we see a sequence of cars that are denoted by
a number, referring to their respective destination. In the second
step we see how they can be placed on 3 classification tracks so



1.2 other train sorting problems 3

that they will form a sorted train after joining the tracks in the
third step.

From the example it is easy to see, that the assumption of
having an outgoing track can easily be dropped. We then can
simply pull out the train to the incoming track in reverse order,
still having the final train sorted by destinations in the same way
as before.

1.2 other train sorting problems

Throughout this thesis our focus will be on the problem stated
above, where we allow only one sorting step while leaving free-
dom to the ordering of the destinations and the cars within each
destination. But there are also other models for different train
shunting problems.

For example a very common model is to assume that an incom-
ing train needs to be sorted in such a way, that each incoming
car leaves at a certain, prefixed position of the outbound train.
Again one considers objectives like the number of necessary sort-
ing tracks and the number of shunting operations. Usually one
allows several shunting operations like pulling out single cars
and rolling them in again.

Two elementary sorting schemes in this model are the trian-
gular and the geometric sorting scheme. For a more detailed
overview about this topic the reader shall be referred to [7, 15].

Another class of shunting problems is related to the problem
of tram scheduling. Here one considers a night depot where
trams have to be placed in such a way, that they can be accessed
optimally in the next morning.

One such model that deals solely with assigning tasks to differ-
ent classes of trams was worked on in [2]. Here one considers a
night depot, where trams of different types were already parked
in a certain order. Now the question arises if it is possible to sat-
isfy a certain sequence of tasks, each requiring a certain type of
tram, while not changing the order of trams in the depot. This
question is shown to be NP-hard, but Blasum et al. [2] propose
a dynamic program that can solve real world instances.

Other models deal with the problem of how to assign the ar-
riving trams to the night depot such that they can be pulled out
without shunting operations in the next morning (see [16]).

1.3 basic definitions

We will now make the definition of TMP more precise and pro-
vide the reader with the necessary notations needed in the fol-
lowing chapters. First we give the definition of a TMP instance
and its basic properties.



4 introduction

1.3.1 Problem instances and solutions

Definition 1.1. We call a set

S = {Sd, 1 6 d 6 t}, t ∈N

of d sets that satisfy

i ∈ Sd ⇒ i /∈ Se for d 6= e

as well as

Sd 6= ∅ ∀ 1 6 d 6 t

a problem instance of TMP. That means S is a collection of t
sets, where each set Sd contains the cars that will have to go to
destination d (no car can be in two different sets, as it must be
associated with exactly one destination).

The number of destinations in S is denoted by t(S) = |S|.t(S) is the number
of destinations The number of cars in S is denoted by n(S) =

∑t(S)
d=1 |Sd|.

n(S) is the number
of cars

Alternatively S can be represented by a n(S)-tuple

TS = (d1, . . . ,dn(S))

with 1 6 di 6 n(S). Here di denotes the destination of the ith

car arriving at the hump yard, i.e. i ∈ Sdi .
The set of all possible problem instances will be denoted by S.

For any destination Si ∈ S the numbers of the cars i ∈ Si can
be seen as the arrival times of the cars. We will assume them to
be integers in the range of 1, . . . ,n. This for example allows us
to sort the cars of a destination in linear time, using radix sort
or some other linear time sorting scheme for integer valued sets
(see for example Knuth [9]).

If the context allows no disambiguation we will simply use n
and t for the number of cars or destinations.

While in S we look at the destinations and which cars belong
to them, the tuple TS reflects incoming train and is often a more
intuitive way to describe a problem instance. As the two repre-
sentations for problem instances S and TS can easily be inter-
changed, we will use both ways to describe a problem instance,
depending which one is more practical in the respective case.

Example 1.2. In the example shown in figure 3 the correspond-
ing problem instance would look as follows:

S = {{1, 5, 11}, {2, 6}, {3, 8}, {4, 7, 10}, {9}}

with the alternative representation

TS = (1, 2, 3, 4, 1, 2, 4, 3, 5, 4, 1)



1.3 basic definitions 5

Now we will give a definition of a valid solution for a TMP

instance.

Definition 1.3. A valid solution for S ∈ S is given by a tuple

L = (L1, . . . ,Lk)

where the

Li = (li1, . . . , limi
)

represent the sorting tracks and we have

∀ s ∈ Sd ∈ S ∃i, j : lij = s

i.e. every car must occur on one sorting track. Furthermore we
must have

j1 < j2 ⇒ lij1 < l
i
j2
∀i

i.e. the car that is placed first on a sorting track must have arrived
first in the incoming sequence.

Now let

lh = lij, where i = min{g ∈N0 :

g∑
i ′=1

mi ′ > h}+ 1

and j = h−

i−1∑
i ′=1

mi

so the lh represent the sequence we get when concatenating the
tracks Li.

Now for L to be a valid solution we further require

li1 , li2 ∈ Sd, i1 < i2 ⇒ li ′ ∈ Sd ∀i1 < i ′ < i2

i.e. cars of one destination may not be interrupted by cars of
other destinations after concatenating the sorting tracks.

In the definition above we assume the sorting tracks Li to be
ordered in such a way, that they can be pulled out in increasing
order. This is mainly for convenience and especially in the case
of the online problem (see Chapter 3) we will refrain from this
requirement.

Next we will show a different way to represent a solution
based on an approach taken by Dahlhaus et al. [5]. The main
idea is to look at the ordering of the destinations in the outbound
train. For any permutation of the destinations we can define a
corresponding solution that results in an outbound train where
the destinations appear in the order of the given permutation. A permutation π of

the destinations
defines a solution



6 introduction

Algorithm 1 Calculate a solution from a permutation of the des-
tinations
l← 1

K← 1

for i = 1 to t do
Sort Sπ(i) = (s1, . . . , sm) by arrival time
Choose j minimal with sj > l
Add cars (sj, . . . , sm) to LK
l← sm
if j > 1 then
K← K+ 1

Add cars (s1, . . . , sj−1) to LK
l← sj−1

end if
end for

Definition 1.4. For any permutation π of the numbers 1, . . . , t(S)
a solution LπS is given by Algorithm 1 such that the destinations
of the outbound train appear in the order of π.

What Algorithm 1 actually does is to place the cars of Sπ(1) on
sorting track L1 followed by all cars of Sπ(2) that arrive after the
last car of Sπ(1). If all cars of Sπ(2) can be placed this way, we
continue with the next destination until there are cars left over
that cannot be placed on L1 as they arrive too early. These are
placed on track L2 where the same procedure is continued until
the cars of last destination Sπ(t) are completely assigned.

The algorithm runs in linear time, as we need to consider ev-
ery destination only once and sorting the integer values of each
destination can be done in linear time (using for example Radix
sort [9]).If the order of

destinations is fixed,
calculating K is easy

Note that Algorithm 1 uses the smallest number of tracks to
arrive at a solution where the destinations are ordered in the
required way (see [6]).

Another way to look at this was given by [5]. We look at K
repetitions of the numbers 1, 2, . . . ,n. K shall be chosen small-
est, such that the repeated series of numbers can still contain the
numbers of Sπ(1) followed be the numbers of Sπ(2) and so forth.
Here each repetition 1, 2, . . . ,n corresponds to one of the sorting
tracks. For more information about this representation of a TMP

solution the reader shall be referred to [5]. The idea of this solu-
tion representation will be illustrated by the following example
based on the problem instance from example 1.2.

Example 1.5. For the instance S given in example 1.2 the solution
as depicted in figure 3 will look like

π = (2, 3, 4, 1, 5)



1.3 basic definitions 7

When following the steps of Algorithm 1 we first place the cars
of destination

Sπ(1) = S2 = {2, 6}

on L1, so we have L1 = (2, 6). The next destination is

Sπ(2) = S3 = {3, 8}

As car 3 arrives to early, we can only place car 8 on L1. 3 will be
placed on the next track L2. Next the cars of destination

Sπ(3) = S4 = {4, 7, 10}

fit completely on L2 and we continue till we arrive at the final
solution

LπS = ((2, 6, 8), (3, 4, 7, 10, 11), (1, 5, 9))

If we look at the repetition of the interval 1, 2, . . . , 11 for three
times, we can fit the cars in the following way

1 2 3 4 5 6︸ ︷︷ ︸
S2

7 8 9 10 11 1 2 3︸ ︷︷ ︸
S3

4 5 6 7 8 9 10︸ ︷︷ ︸
S4

11 1 2 3 4 5︸ ︷︷ ︸
S1

6 7 8 9︸︷︷︸
S5

10 11

Observe how the different ways of looking at the solution can
easily be interchanged.

Next we will define some more properties of valid solutions
as well as optimal solutions:

K(L) is the number
of sorting tracks in LDefinition 1.6. For any solution L let

K(L) = |L|

be the number of sorting tracks used in L. The same way we
define for a permutation π

K(π,S) = K(LπS)

Let St(S) be the symmetric group of all possible permutations
of the numbers 1, . . . , t(S). Then St(S) represents a set of valid
solutions for S. K(S) is the minimal

number of sorting
tracks necessary to
sort S

Now K(S) = minπ∈St(S)K(π,S) is the minimal number of sort-
ing tracks necessary to sort the train represented by S.

We call any π∗ ∈ St(S) with K(π∗,S) = K(S) and the corre-
sponding Lπ

∗
S an optimal solution for S.

In the following we want to take a closer look on the structure
of a specific solution.



8 introduction

Definition 1.7. Let S ∈ S, S = {S1, . . . ,St} and L = (L1, . . . ,Lk}
be a solution for S. We say a destination d is split in L if

∃i 6= j, s1, s2 ∈ Sd : s1 ∈ Li and s2 ∈ Lj

i.e. cars from destination d appear on two different sorting tracks
in the solution.Z(L) is the number

of split destinations
in L

For any solution L we can now define the following property

Z(L) = |{d, destination d is split in L}|

stating the total number of split destinations.

It is clear, that from the definition of the solution L the cars
from a split destination d must appear at the very end of one of
the two tracks while the other track has to start with cars from
d.

Example 1.8. In the solution LπS from example 1.5 the destina-
tions 1 and 3 were split between different sorting tracks. There-
fore we have

Z(LπS) = 2
Z(S) is the minimal

number of split
destinations for an

optimal solution of S

Definition 1.9. Let S ∈ S. Then

Z(S) = min
L is optimal solution for S

Z(L)

gives the minimal number of split destinations necessary for an
optimal solution.

Next we will define sub-instances of a given instance S. This
will later be helpful to derive lower bounds on K(S).

1.3.2 Sub-instances

Removing cars and
destinations leads to

sub-instances
Definition 1.10. Let S ∈ S,

S = {S1, . . . ,Sn}

We now call a set

D = {S ′n1 , . . . ,S
′
nl
}

with

ni 6= nj ∀i 6= j

and

S ′i ⊆ Si

a sub-instance of S.



1.3 basic definitions 9

So a sub-instance is a TMP instance where destinations and
cars from the original instance may have been removed. Sub-
instances can be treated in the same way as the original instance,
but their properties and optimal solutions may vary.

Next we will look at a relation between two sub-instances:
Sub-instances are
disjoint if they do
not overlap nor
share destinations

Definition 1.11. Let S ∈ S and

D1 = {S ′n1 , . . . ,S
′
nl
}, D2 = {S ′m1

, . . . ,S ′mo
}

be sub-instances of S. We call D1 and D2 disjoint sub-instances
if the following conditions are satisfied:

• They have no destinations in common:

ni 6= mj ∀i ∈ {1, . . . , l}, j ∈ {1, . . . ,o}

• The last car of one sub-instance arrives before the first car
of the other sub-instance. Therefore we either have

x ∈ S ′ni , y ∈ S
′
mj
⇒ x > y ∀i ∈ {1, . . . , l}, j ∈ {1, . . . ,o}

or

x ∈ S ′ni , y ∈ S
′
mj
⇒ x < y ∀i ∈ {1, . . . , l}, j ∈ {1, . . . ,o}

The disjoint property will help us to ensure that the two sub-
instances will not interfere with one another when solved subse-
quently.

Example 1.12. As an example for disjoint sub-instances we first
take the instance S from example 1.2. Now we consider the sub-
instances

D1 = {{1, 5}, {2, 6}, {3}}

and

D2 = {{7, 10}, {9}}

They are disjoint as the last car of D1 is 6 and therefore arrives
before the first car of D2, which is 7.

Now we want to relate the solutions of the original instance to
solutions of its sub-instance.

Definition 1.13. Let S ∈ S and D be a sub-instance of S. Further-
more let L be a solution for S. We say

L ′ = (Lm1
, . . . ,Lmk ′ )

with k ′ 6 k and mi 6= mj ∀i 6= j is the sub-solution of L corre-
sponding to D if it contains exactly the cars from the original
solution L that also appear in D.

Sub-instances can
only have a smaller
optimum

Obviously K(S) > K(D) as the optimal solution cannot use
more tracks for a reduced problem instance.



10 introduction

1.3.3 Interval graphs and overlappings

In this section we will introduce a relation between problem in-
stances and interval graphs. This relation exists as any destina-
tion can be seen as an interval that starts with its first and ends
with its last car. This way we can define the corresponding inter-
val graph in the following way:

There is an interval
graph that

represents the
overlapping

destinations of S

Definition 1.14. Let S ∈ S. We now define an interval graph

GS = (S,E)

where each node is a destination from S and

∃x,y ∈ Si, z ∈ Sj, i 6= j, x < z < y⇒ {Si,Sj} ∈ E

i.e. there is an edge between the destinations i and j if there is a
car of destination j that arrives in between cars of destination i.
In this case we say that i and j are overlapping destinations.

Note that while every problem instance has exactly one corre-
sponding interval graph, we can find infinitely many problem
instances that correspond to a certain interval graph.

With this relation to interval graphs established, we need some
basic definitions from graph theory

Definition 1.15. For GS = (S,E) we call C ⊆ S a clique iff

Si,Sj ∈ C⇒ {Si,Sj} ∈ E ∀i 6= j

i.e. all distances in C are overlapping with each other.
We call C ⊆ S a maximal clique iff there is no clique C ′ ⊆ S

with C ( C ′, i.e. C cannot be enlarged by adding more destina-
tions.

We call C ⊆ S a maximum clique iff for all possible cliques
C ′ ⊆ S we have |C| > |C ′|, i.e. there is no larger clique than C.

Definition 1.16. Let S ∈ S and c be any clique in GS. Then let

u(c) = |c|

For two cliques c1 and c2 let

c1 ∩ c2

be the clique that contains only the instances that appear both in
c1 and c2.

Note that c1 ∩ c2 is also a clique as the subset of a clique must
obviously be a clique by its own.

Now we want to relate the properties of the corresponding
interval graph back to the original problem.



1.3 basic definitions 11

1

3

2

4

5

1

2

3

4

5

Figure 4: An example for an interval graph with the corresponding
intervals

u(S) is the
maximum number
of mutually
overlapping
destinations

Definition 1.17. Let S ∈ S and let C be a maximum clique of GS.
Then we say

u(S) = u(C)

is the number of maximal overlapping intervals.

Again this number will help us later to derive bounds on K(S).
[8] show that determining maximum cliques in preordered in-
terval graphs can be done in O(n) time. We can assume that
ordering the intervals can be done in linear time as we only deal
with integer values for the arrival times (see remarks to Defini-
tion 1.1). Furthermore if we know the sequence TS, we already
have the ordering of the instances.

Example 1.18. Again we will illustrate the definitions made above
for the problem instance from example 1.2. In figure 4 the corre-
sponding interval graph GS is depicted as well as the intervals
that correspond to the different destinations.
GS has two maximal cliques

C1 = {S1,S2,S3,S4}

and

C2 = {S1,S4,S5}

where C1 is a maximum clique. Therefore we have u(S) = |C1| =

4.

1.3.4 Algorithms

Definition 1.19. An algorithm alg for TMP is a mapping that
returns a valid solution for any problem instance S ∈ S:

alg : S 7→ L where L is valid solution of S



12 introduction

As any algorithm alg always produces a solution for a prob-
lem instance S, it also yields an upper bound on the optimal
number of sorting tracks:

K(alg(S)) > K(S)

Later in Chapter 3 about online algorithms we will make the
further requirement that an algorithm may not possess knowl-
edge about the whole problem instance when assigning a car to
a sorting track, but only about the cars up to the current one.



2
O F F L I N E P R O B L E M

In this chapter we will consider the offline version of TMP, i.e.
we will deal with the case that the whole problem instance S
is known beforehand. The goal will be to construct a solution
that is optimal or at least a close approximation to the optimal
solution.

First note the following result regarding the complexity of the
general TMP:

Theorem 2.1. Determining the minimal number of sorting tracks
K(S) in general is NP-hard.

TMP is NP-hard

Proof. See Dahlhaus et al. [5]

Therefore, in concordance with the general belief, we can say
that solving TMP in general is difficult and can not be imple-
mented by any fast (i.e. polynomial time) algorithm.

The next steps will be to derive an Integer Program (IP) For-
mulation for TMP which will be done in section 2.1. Afterwards
we will derive some bounds for K(S) in section 2.2.

2.1 ip formulation

To formulate an TMP instance S as an IP we need to define its
objective as well as constraints. In a straight forward approach
we will introduce a variable K ∈ N that will correspond to the
total number of sorting tracks. Obviously this will also be our
objective value.

Next we need to think up the necessary constraints. First we
can think of a variable xi for every car i ∈ {1, . . . ,n} that tells us
on which of the sorting tracks car i will be placed. So we get the
constraints

1 6 xi 6 K, xi ∈N ∀i ∈ {1, . . . ,n}

as every car has to be placed on one of the K sorting tracks.
Now we have to encode the constraint that all cars of a certain

destination need to appear in a consecutive order. To achieve
this we introduce variables yd1,d2 for all pairs of destinations
d1,d2 ∈ {1, . . . , t}. Those will be binary variables that are 1, if
destination d1 will appear before d2 in the outgoing sequence
and 0 otherwise. Now we only need to find constraints that link
the xi with the yd1,d2 .

13



14 offline problem

First note that for every car i the number

n · (xi − 1) + i

gives some kind of relative position in the outgoing sequence,
i.e. a car i leaves the marshalling yard before car j if and only if

n · (xi − 1) + i < n · (xj − 1) + j

This becomes clear if we consider the following two possible
cases. Either the two cars are on different sorting tracks xi 6= xj.
Then obviously the car leaves first, that is on the sorting track
that is pulled out earlier (the smaller one). If the cars are on the
same sorting track xi = xj, the car leaves first, that has entered
first, i.e. here it only matters if i < j.

Now we need to find a linear constraint that lets all cars of
one destination either leave before or after all cars of another
destination. To achieve this we need an upper bound on the ob-
jective value K. As we will see shortly in Theorem 2.2 we can use
for example the number of destinations t as an upper bound, as
placing each destination on one sorting track always yields a so-
lution. Using this we can construct the desired constraints. We
need to consider all possible pairs of destinations

d1,d2 ∈ {1, . . . , t},d1 6= d2

and all pairs of cars from these destinations

i ∈ Sd1 , j ∈ dd2

then we can formulate for those the following constraints

n · (xi − 1) + i+ yd1,d2 · (n · t) > n · (xj − 1) + j

as well as

n · (xi − 1) + i 6 n · (xj − 1) + j+ (1− yd1,d2) · (n · t)

This forces car i to leave before car j if yd1,d2 = 1 and vice versa
in the other case.

Putting all this together, we can now formulate any TMP in-
stance S as the following IP:

min K

s.t. n · (xi − 1) + i+ yd1,d2 · (n · t) > n · (xj − 1) + j
∀i ∈ Sd1 , j ∈ Sd2 , d1,d2 ∈ {1, . . . , t}, d1 6= d2

n · (xi − 1) + i 6 n · (xj − 1) + j+ (1− yd1,d2) · (n · t)
∀i ∈ Sd1 , j ∈ Sd2 , d1,d2 ∈ {1, . . . , t}, d1 6= d2

1 6 xi 6 K, xi ∈N ∀i ∈ {1, . . . ,n}

yd1,d2 ∈ {0, 1} ∀d1,d2 ∈ {1, . . . , t}

K ∈N



2.2 bounds 15

Note that this IP formulation is not very efficient to be solved
in practice (even when using a closer upper bound than the triv-
ial one) and is therefore more of theoretical interest than of prac-
tical value.

2.2 bounds

In this section we will present some bounds on K(S). Using them
we can define a range of possible values for our optimum. They
will be needed later, for example when analyzing the competi-
tiveness of specific algorithms.

We start this section with the following, trivial upper bound:

Theorem 2.2.

K(S) 6 t(S)
K(S) 6 t(S)

Proof. As already stated earlier, we can always find a solution by
simply assigning each destination its own track.

The first non trivial bound is based on the total number of cars
and was first presented by Dahlhaus et al. [5]:

Theorem 2.3.

K(S) 6 dn(S)
4

+
1

2
e

K(S) 6 dn(S)4 + 1
2 e

Proof. For the proof see Dahlhaus et al. [5]

Later we will see in Section 2.3.1 that this bound is possibly
sharp and that it leads to a family of instances for which we can
determine solutions easily. But in general the bound often tends
to be too large (see the results in Chapter 4).

Theorem 2.4.

K(S) 6 u(S)
K(S) 6 u(S)

Proof. To show the bound, we need to construct a solution using
no more than u(S) tracks. The corresponding interval graph GS

can be colored in linear time using an easy algorithm shown in
[13]. With coloring an interval graph we refer to the problem
of assigning a color to each vertex such that there is no edge
between vertices of the same color.

Using such a coloring we can easily generate a solution by
using one sorting track per color. The cars are then placed on
the track corresponding to the color that was assigned to it in
the coloring process. As two destinations of the same color do
not overlap, they can be placed on the same track.



16 offline problem

An adapted version of the algorithm in [13] is shown in Algo-
rithm 2.

Now let k be the number of colors Algorithm 2 uses for some
instance S. The moment color number k is used, there must be
k − 1 unfinished destinations. These destinations and the one
that shall be colored with color k must therefore form a clique.
So u(S) > k.

This sorting scheme will again be used in the chapter about
the online problem in section 3.3.2.

Algorithm 2 Algorithm for optimal destination coloring

Set isUsed(COLOR) to false for all colors
for all Car c ∈ TS do
d be the destination of c
if c is the first car of destination d then

Let COLOR be the first color
while isUsed(COLOR) do

Let COLOR be the next color
end while
Assign COLOR to d
Set isUsed(COLOR) to true

else if c is the last car of destination d then
Let COLOR be the color assigned to d
Set isUsed(COLOR) to false

end if
end for

Example 2.5. An example for Algorithm 2 can be seen in Fig-
ure 5. It uses the same instance as in Example 1.2. In this case
the algorithm does not obtain an optimal solution as we have
already seen that there exists a solution that only uses three sort-
ing tracks.

Next we will show some lower bounds for K(S).

Lemma 2.6. Let S ∈ S and L be a solution for S. Then

u(S) −K(L) 6 Z(L)

Proof. Let D be a sub-instance of S, containing only the destina-
tions that are not split in L and let L ′ be the sub-solution of L
corresponding to D.

Let C be a maximum clique in GS and let C ′ be the set remain-
ing after removing all destinations that are split in L. We then
have

|C|−Z(L) 6 |C ′|



2.2 bounds 17

1 2 3 4 1 2 4 3 5 4 1Input sequence:

Color 1:

Color 2:

Color 3:

Color 4:

Solution                

Interval coloring

L
1
:

L
2
:

L
3
:

L
4
:

(1, 5, 11)

(2, 6, 9)

(3, 8)

(4, 7, 10)

12341243541

111

225

33

444

11122533444

Figure 5: Example for Algorithm 2



18 offline problem

as at most Z(L) elements from C might have been removed to
obtain C ′. As C is a maximum clique in GS and C ′ a clique in
GD we get

u(S) −Z(L) = |C|−Z(L) 6 |C ′| 6 u(D) 6 K(L ′)

where the last inequality holds because there are no split desti-
nations in L ′ and therefore no overlapping destinations can be
placed on the same sorting track. Finally using K(L ′) 6 K(L)

(which is obviously true for sub-solutions) we obtain

u(S) −Z(L) 6 K(L)

Corollary 2.7. Let S ∈ S. Then

u(S) −K(S) 6 Z(S)

Proof. Follows directly from Lemma 2.6 as for any solution L

u(S) −K(S) 6 u(S) −K(L) 6 Z(L)

holds and we can choose L to be an optimal solution with mini-
mal splits.

Lemma 2.8. Let S ∈ S. Then

K(S) > Z(S) + 1

Proof. Let L be an optimal solution of S with Z(L) = Z(S), i.e.
with minimal splits. As any split destination occupies the end
of one sorting track and the beginning of the following one, we
know that L must use at least Z(L) tracks for all the beginning
split destinations plus one additional for the end of the last split
destination. Therefore

K(S) = K(L) > Z(L) + 1 = Z(S) + 1

Using all those inequalities we can finally prove the first lower
bound. The idea for this originally comes from [1].

Theorem 2.9.

K(S) > du(S) + 1
2

e
K(S) > du(S)+12 e



2.2 bounds 19

Proof. Combining Corollary 2.7 and Lemma 2.8 we get

K(S)
Lem 2.8
> Z(S) + 1

Cor 2.7
> u(S) −K(S) + 1

leading to

K(S) >
u(S) + 1

2

which proves the theorem, as K(S) ∈N.

The bounds from Theorem 2.4 and 2.9 lead to a range of pos-
sible values for K(S) that is of size du(S)−12 e. Note that therefore
none of them can be further away from the optimum than by a
factor of two.

Next we will derive a new lower bound based on further prop-
erties of the problem instance.

Lemma 2.10. Let S ∈ S, D1 and D2 be disjoint sub-instances of S, L
be a solution of S and Li be the sub-solution of L corresponding to Di.
Then

K(L) > K(L1) +Z(L2)

Proof. We have to consider 2 cases:

1 . case : D1 arrives before D2
There are Z(L2) split destinations from D2 leading to Z(L2)

sorting tracks that must start with a destination from D2. But
those cannot be the sorting tracks used for the cars from D1 as
all of them arrive before the cars from D2. So in this case the
inequality must be fulfilled.

2 . case : D2 arrives before D1
This case follows analogously by considering the Z(D2) tracks

that must end with a destination from D2 and cannot be the
same as any track from L1.

Theorem 2.11. Let S ∈ S, D1 and D2 be disjoint sub-instances of S.
Then

K(S) > du(D1) + u(D2)
2

e

Proof. Let L be any solution for S and Li be the sub-solution of L
corresponding to Di. Now using Lemma 2.6 and 2.10 we obtain

u(D1) −K(L1)
Lem. 2.6
6 Z(L1)

Lem. 2.10

6 K(L) −K(L2)

⇒u(D1) −K(L) 6 K(L1) −K(L2)



20 offline problem

and

u(D2) −K(L2)
Lem. 2.6
6 Z(L2)

Lem. 2.10

6 K(L) −K(L1)

⇒K(L) − u(D2) > K(L1) −K(L2)

resulting in

u(D1) −K(L) 6 K(L1) −K(L) 6 K(L) − u(D2)

⇒u(D1) + u(D2) 6 2K(L)

⇒du(D1) + u(D2)
2

e 6 K(L)

where the last step holds as K(L) ∈ N. As this is true for any
solution L the theorem is proven.

Note that the condition ofD1 andD2 to be disjoined is crucial:

Example 2.12. We consider the following problem instance

S = {{1, 10}, {2, 5}, {3, 4}, {6, 9}, {7, 8}}

with the division into the following, not disjoint sub-instances

D1 = {{1, 10}, {2, 5}, {3, 4}}

and

D2 = {{6, 9}, {7, 8}}

If we would apply Theorem 2.11 a lower bound on the necessary
sorting tracks would be

K(S) > du(D1) + u(D2)
2

e = d3+ 2
2
e = 3

but using the permutation

π = (2, 4, 1, 3, 5)

we can achieve a solution using only 2 sorting tracks:

K(π,S) = 2

This can also be seen in figure 6.

Next we will give an example on how Theorem 2.11 can be
applied to derive a lower bound on K(S). Furthermore it will
illustrate a case where the bound will actually be exact.



2.2 bounds 21

TS: 1 2 3 3 2 4 5 5 4 1

solution:
1 3 3 5 5
2 2 4 4 1

Figure 6: Example for necessity of complete separation of D1 and D2

TS: 1 2 3 1 3 4 2 5 4 3 5 4 3

D1 D2

Figure 7: Example for Theorem 2.11

Example 2.13. We consider the problem instance

S = {{1, 4}, {2, 7}, {3, 5, 10, 13}, {6, 9, 12}, {8, 11}}

and the disjoint sub-instances

D1 = {{1, 4}, {2, 7}}

and

D2 = {{8, 11}, {9, 12}, {10, 13}}

(see Figure 7).
By Theorem 2.11 we now get

K(S) > du(D1) + u(D2)
2

e = d2+ 3
2
e = 3

Furthermore we have u(S) = 3 so by Theorem 2.4 we know that

3 6 K(S) 6 u(S) = 3

so S can be sorted optimally using 3 sorting tracks.

Example 2.13 also illustrates a case where the bound from The-
orem 2.4 is sharp. On the other hand it gives an instance where
the bound from Theorem 2.11 is strictly better than the one de-
rived from Theorem 2.9 as

du(S) + 1
2

e = d3+ 1
2
e = 2

for the specific instance S from Example 2.13.



22 offline problem

As the lower bound in Theorem 2.11 depends on the choice of
the two sub-instances D1 and D2 one can wish to find two sub-
instances such that the resulting lower bound is maximized. In
the next step we will show that it is possible to find such optimal
sub-instances within polynomial time.

First note that the disjoint property of D1 and D2 tells us that
there must be a certain car c in S that divides D1 and D2, i.e. D2
starts after c and D1 ends before or at last with c.

Now let D∗1 and D∗2 be disjoint sub-instances of S satisfying

d
u(D∗1) + u(D

∗
2)

2
e = max

D1,D2 disjoint sub-instances of S
du(D1) + u(D2)

2
e

and let c∗ be a car dividing D∗1 and D∗2.
First assume we already know c∗. In this case we can divide S

into two sub-instances D ′1 and D ′2 where

TD
′
1 = (d1, . . . ,dc∗)

and

TD
′
2 = (dc∗+1, . . . ,dn(S))

i.e.D ′1 consists of the first c∗ andD ′2 of the last n(S)− c∗− 1 cars.
Note that D ′1 and D ′2 do not need to be disjoint, but we know
that D∗1 must be a sub-instance of D ′1 and D∗2 a sub-instance of
D ′2. Our goal will be to determine the quantity

u(D∗1) + u(D
∗
2)

as we are not interested in the concrete sub-instances D∗1 and D∗2
but only in the resulting lower bound.

For each interval graph GD
′
1 and GD

′
2 we can list all maximal

cliques in O(n) time (see [8]). We can now compare all possible
pairs (c1, c2) with c1 maximal clique in GD

′
1 and c2 maximal

clique in GD
′
2 , this way finding a pair that maximizes

u(c1) + u(c2) − u(c1 ∩ c2)

(the last term resulting from the fact that any destination may
only appear in one of the sub-instances).

As the maximum cliques of D∗1 and D∗2 must be subsets of
such maximal cliques c1 and c2 we will find an optimal solution.

Now we just need to do this for all possible cars c, arriving at
the correct guess c∗ in at most n(S) steps.The maximal bound

for Thm. 2.11 can be
found in polynomial

time

Putting all this together we get a total runtime of O(n4) as we
need to run through O(n) cars, each time compare O(n2) pairs of
maximal cliques and calculate the number of shared destinations
for each pair of maximal cliques, which can be done in O(n).
Algorithm 3 shows the resulting algorithm.



2.3 easy instances 23

Algorithm 3 Determine optimal bound for Theorem 2.11

c← 0

for all car i ∈ {1, . . . ,n− 1} do
Divide instance S into D ′1, D ′2 with TD

′
1 = (d1, . . . ,di) and

TD
′
2 = (di+1, . . . ,dn)

Find all maximal cliques in GD
′
j and store them in Cj, for

all j ∈ {1, 2}
for all c1 ∈ C1 and c2 ∈ C2 do
c← max(c,u(c1) + u(c2) − u(c1 ∩ c2))

end for
end for
return c

2.3 easy instances

Using the bounds from the last section, we can think of instances
where a lower and an upper bound coincide. In this case the de-
cision problem “K(S) > k?” would be easy to answer. In the fol-
lowing families of such instances will be defined. Furthermore
we will provide algorithms to efficiently solve the corresponding
optimization problem.

2.3.1 Pair instances with maximal overlapping destinations

Pair problems have
exactly two cars per
destination

Definition 2.14. We call a problem instance S ∈ S a pair problem
instance, iff

Si ∈ S⇒ |Si| = 2

i.e. there are exactly two cars per destination in S.

A pair problem instance implies that n(S) = 2 · t(S). Now we
can define a subset of pair problem instances that is easy to solve:

Corollary 2.15. Let S ∈ S be a pair problem instance and t(S) = u(S)
then

K(S) = du(S) + 1
2

e

Proof. From the assumptions we get that n(S) = 2t(S) = 2u(S).
This leads to

du(S) + 1
2

e
Theorem 2.9

6 K(S)
Theorem 2.3

6 dn(S)
4

+
1

2
e = du(S) + 1

2
e

Corollary 2.15 gives a set of instances for which the bounds in
Theorem 2.3 and 2.9 are sharp. Therefore we can easily answer
the decision problem. Next we give an algorithm to efficiently



24 offline problem

solve the optimization problem, i.e. that computes optimal solu-
tions. It is based on the proof of Theorem 2.3 given in [5]. Algo-
rithm 4 shows the resulting algorithm. It runs in O(n) time.

Algorithm 4 Algorithm to determine optimal solution for in-
stances from Corollary 2.15

for i = 1 to bt(S)2 c do
Let S2i−1 = {x1, x2} and S2i = {y1,y2}, x1 < x2, y1 < y2
if x2 < y2 then
π(2i− 1) = 2i− 1

π(2i) = 2i

else
π(2i− 1) = 2i

π(2i) = 2i− 1

end if
end for
if t(S) is odd then
π(t(S)) = t(S)

end if
return LπS

Now it is left to show that for the resulting LπS we achieve the
optimal number of sorting tracks.

Algorithm 4 solves
pair instances with

maximal
overlappings

optimally

Theorem 2.16. For algorithm 4 we have

K(alg4(S)) = d
t(S) + 1

2
e

Proof. Let S = {S1, . . . ,St(S)} where

Si = {xi1, xi2} , xi1 < x
i
2

Now define

αi = max(x2i−12 , x2i2 )

and

βi = min(x2i−12 , x2i2 )

Next we show via induction that for each solution

L = alg4 = (L1, . . . ,Lk)

of algorithm 4 we have

Li = (. . . ,βi,αi) ∀1 6 i 6 b
t(S)

2
c

That means we always look at the second cars of two destina-
tions and show that the sorting tracks will end with the larger
of the two cars, preceded by the smaller one.

To start the induction look at the first track L1. There are two
cases.



2.3 easy instances 25

case 1 : π(1) = 1, π(2) = 2
In this case we have z1 = 2. By the ordering of the destinations

we will have

L1 = (x11, x12, x22) = (1,β1,α1)

L2 = (x21, . . .) = (2, . . .)

case 2 : π(1) = 2, π(2) = 1
This case works the same way as case 1.

Next we assume that the first i sorting tracks look as claimed.
Let αi be of destination d. Then track Li+1 has to begin with the
first car of destination d as Li ends with the other one.

Now let d ′ be the destination of βi+1. By the choice of algo-
rithm 4 this will be the next destination to be placed on Li+1. As
d < d ′ we get

xd1 < x
d ′
1 < xd

′
2 = βi+1 < αi+1

and therefore the cars can be placed on Li+1 as claimed. This
finishes the induction.

Now let d be the destination of car αb t(S)2 c
. As we have just

seen Lb t(S)2 c
will end with car xd2 , so we know that Lb t(S)2 c+1

will

begin with car xd1 . If t(S) is even, then there are no more desti-
nations left to be sorted. Otherwise there is still destination

St(S) = {x
t(S)
1 , xt(S)2 }

As

xd1 < x
t(S)
1 < x

t(S)
2

we can place both remaining cars on Lb t(S)2 c+1
.

Therefore all cars are sorted on

bt(S)
2
c+ 1 = dt(S) + 1

2
e

tracks.

As the proof did not use the fact that u(S) = t(S), algorithm
4 can be used to sort any pair problem instance using dt(S)+12 e
sorting tracks, even if it might not be an optimal solution in case
of u(S) < t(S).

2.3.2 Instances with large disjoint sub-instances

Next we will look at instances for which the bounds from Theo-
rem 2.4 and Theorem 2.11 coincide. Such an instance was already
shown in Example 2.13.



26 offline problem

For the two bounds to be equal, there have to be two sub-
instances D1 and D2 of S such that

du(D1) + u(D2)
2

e = u(S)

which is equivalent to

u(D1) + u(D2) > 2 · u(S) − 1

So if S has disjoint sub-instances, each having basically the
same number of overlapping instances as the original S (one of
them may have one less), then S can be sorted optimally using
the coloring of Algorithm 2 as shown in Theorem 2.4.

2.3.3 Fixed number of destinations

Next we will look at the results we can achieve, if we keep the
parameter t(S) bounded by a fixed constant.

Theorem 2.17. If t(S) 6 t for a fixed constant t, then K(S) can be
calculated in linear time.

Proof. For any permutation π ∈ St(S) we can calculate the cor-
responding K(LπS) in linear time (see Algorithm 1). There are
t(S)! 6 t! such possible permutations in total. Therefore check-
ing each of them and choosing the best one can be done in
O(t! ·n(S)) = O(n(S)) time.

2.3.4 Fixed overlappings

In a similar fashion to the last section we will now bound the pa-
rameter u(S) by a fixed constant and see in this case again, that
we can find a polynomial time algorithm to solve the problem

Theorem 2.18. If u(S) 6 u for a fixed constant u, then K(S) can be
calculated in polynomial time.

Proof. For any problem instance S with u(S) 6 u we know that

u > u(S)
Theorem 2.4

> K(S)
Lemma 2.8

> Z(S) + 1

and therefore we know that there is an optimal solution that has
at most u− 1 split destinations. Each split has to occur between
two of the n(S) cars, so there are less than n(S)u−1 possibilities
how the splits may be distributed.

In [6] it is shown, that one can compute an optimal solution in
linear time if one requires the cars of each destination to occur
in a fixed order within its destination. Determining the splits
beforehand results in fixing the order of cars within each des-
tination. So for each of the n(S)u−1 possibilities for fixing the



2.3 easy instances 27

splits, we can compute the corresponding optimal solution in
linear time. Therefore K(S) can be computed in O(n(S)u) - i.e. in
polynomial - time, as u was chosen to be constant.

Note that the proof is based on the boundedness of K(S). This
also means that we can use the same algorithm if we know that
K(S) is bounded in some other way. Notably this means, that the
decision problem “K(S) 6 k?” can be solved in polynomial time
for a fixed k. Fixing t or u leads

to polynomial time,
but not necessarily
fast algorithms

The results from this and the last section are more of theoret-
ical interest than of real practical value as the running times of
the obtained procedures can be far from feasible for large choices
of t or u, even though the time complexity is polynomial.





3
O N L I N E P R O B L E M

3.1 introduction to online computation and com-
petitive analysis

This chapter will be dedicated to the online version of TMP. In
online computation we always face a problem where decisions
have to be made on several time steps while the full information
about the problem is not available beforehand. In the case of TMP

we will assume that we have to assign a track to each arriving
car while not possessing knowledge about the sequence of the
following cars. The only information we can use about the future
is whether the current car is the last car of its destination or
not. We can imagine that all the last cars carry a flag indicating
that no more cars of the same destination will follow. At the
end of this section we will show that this assumption is crucial
for the model as otherwise we will not be able to construct any
reasonable online algorithms for it.

This kind of model is useful if, for example, we really don’t
know which cars will arrive next or if we want to take into ac-
count possible disturbances in the schedule that occur during
the marshalling process.

To compare different online algorithms we need some kind
of performance measure. In the field of online computation the
method of competitive analysis, as for example proposed by
Borodin and El-Yaniv [3], has been established as one of the most
successful ways to analyze the quality of an algorithm. In com-
petitive analysis we compare the online algorithms results with
the optimal offline results, i.e. the best possible solution if all
knowledge would have been available in advance.

In our analysis we need to distinguish between determinis-
tic and randomized online algorithms. For deterministic algo-
rithms, the algorithm’s reaction to any specific input will always
be the same. On the other hand randomized algorithms can uti-
lize some source of randomness, like a random number gener-
ator, to generate its output. Therefore the output can vary even
while the input stays the same. As there does not have to be a
call to the source of randomness, the class of deterministic algo-
rithms is obviously contained in the class of randomized algo-
rithms.

Following the concepts given in [3] we can now relate these
ideas to TMP and get the undermentioned definition for the com-
petitiveness of a deterministic online algorithm.

29



30 online problem

Definition 3.1. A deterministic online algorithm alg is c-competitive,
if there exists a constant α such that for all problem instances
S ∈ S we have

K(alg(S)) 6 c ·K(S) +α

This means a c-competitive deterministic online algorithm for
TMP will always get a solution that can be at most worse by a
factor of c (and an additive constant α) than the optimal solution.

Often the problem of obtaining the competitive ratio is viewed
as a game between the online player and a malicious adversary.
The online players goal will be to construct an algorithm that
performs well on any input sequence S the adversary will cre-
ate. The adversary can now use the knowledge of the algorithm
to construct a problem instance that maximizes the number of
tracks the online algorithm uses, while keeping K(S) small.

Obviously this concept gets more complicated when consider-
ing randomized online algorithms. In this case the algorithm’s
output is not known in advance, making it more difficult to de-
fine the actions of the adversary. Borodin and El-Yaniv [3] pro-
pose three different adversary models. Of these we will use the
concept of the oblivious adversary, who has to construct the in-
put sequence in advance, just possessing knowledge about the
possible decisions of the algorithm and their probabilities, but
not about the actual decisions the algorithm will take. We can
adjust Definition 3.1 accordingly:

Definition 3.2. A randomized online algorithm alg is c-competitive,
if there exists a constant α such that for all problem instances
S ∈ S we have

E[K(alg(S))] 6 c ·K(S) +α

So for the randomized algorithm it suffices to generate an out-
come that can be expected to be no worse than c times the opti-
mum, while the actual output maybe worse.

Having all necessary ideas at hand we can now show that the
flag, indicating the last car, we use for our model is absolutely
necessary as there could be no competitive online algorithm oth-
erwise.Marking the last car

of each destination is
crucial for the online

model
Theorem 3.3. There is no competitive online algorithm for TMP ignor-
ing the knowledge if a car is the last of its destination

Proof. Assume there exists such a c-competitive, possibly ran-
domized, online algorithm that we will call alg . Now take the
sequence Sm1 with

TS
m
1 = (1, 2, . . . ,m)



3.2 lower bound for det. online algorithms 31

for an arbitrary m > 1. Obviously the optimal solution for Sm1
will be to place all cars on the same track, leading to K(Sm1 ) = 1.
As alg is c-competitive, there must be a constant α such that

E[K(alg(Sm1 ))] 6 c+α

i.e. there is a positive probability that alg uses at most c + α
tracks to sort Sm1 for all m > 1.

Now we take the sequence Sm2 with

TS
m
2 = (1, 2, . . . ,m, 1, 2, . . . ,m)

Having no flag for indicating a last car, the two sequences
Sm1 and Sm2 are absolutely identical up to the mth car. Therefore
when given Sm2 alg will again place the first m cars on at most
c+α tracks with positive probability.

Now choose m = 2(c + α) + 1. Using the already obtained
results we get a positive probability that alg will place at least
3 cars of different destinations on one of the sorting tracks. But
this must lead to an infeasible solution, as a car in the middle of
the mentioned track can never connect to its second car.

So any c-competitive online algorithm will produce infeasible
solutions with positive probability there can not be such an al-
gorithm.

In the past competitive analysis has proven to be a very useful
tool, as we do not need to take into account factors like the prob-
ability distribution over the incoming instances. Furthermore the
competitive ratio grants a guaranteed quality of the algorithm’s
solution (of course this only holds true for deterministic algo-
rithms). Thus the results of this chapter can also be viewed as
approximations for the offline problem. Online algorithms

are robust to
schedule
disturbances

Another interesting property of online algorithms is their in-
herent robustness. As long as the last car of each destination is
still flagged correctly, any disturbance in the incoming sequence
of cars will not affect the algorithm in that it will still produce a
valid solution. Online algorithms can therefore be called strictly
robust, where an algorithm is said to be strictly robust if its solu-
tions do not need to be recovered in any way. Such an approach
is also taken for example by [4, 10]. Considering this makes the
online problem especially interesting„ as in railway optimization
one often deals with unforeseen changes in schedules.

3.2 lower bound for det. online algorithms

In this section we will derive a lower bound for the entire class of
deterministic online algorithms for TMP. Using this knowledge
we can later construct an optimal deterministic online algorithm,
i.e. one that achieves this bound.



32 online problem

As we restrict ourselves to deterministic online algorithms, we
can build a bad sequence for any algorithm based on the choices
it has made so far.

We will restrict ourselves to pair instances as given in defini-
tion 2.14. That means we can show the lower bound, using only
instances having two cars per destination.

Head instances are
the first cars of a

pair instance
Definition 3.4. We call Ŝ ∈ S a head instance, iff

Si ∈ Ŝ⇒ |Si| 6 2

A pair problem instance S ∈ S is called a completion of Ŝ, iff

TS = (d1, . . . ,d
n(Ŝ)

, . . . ,dn(S))

where

T Ŝ = (d1, . . . ,d
n(Ŝ)

)

i.e. S begins with the cars of Ŝ and where

t(S) = t(Ŝ)

i.e. there are no new destinations in S.
Also we define for any deterministic online algorithm alg:

alg(Ŝ) = L̂

where L̂ is the sub-solution of L = alg(S) corresponding to Ŝ
where S is any completion of Ŝ.

The head instances will help to construct bad instances for
online algorithms car by car. Note that L̂ is not dependent on
the choice of the completion of Ŝ as we only deal with online
algorithms.

Definition 3.5. Let L = alg(S) be a solution to S ∈ S. We call a
track Li ∈ L closed, iff

Li = (x1, . . . , xm), xm ∈ Sj ∈ S

and

∃Li ′ = (y1, . . . ,ym ′) ∈ L, y1 ∈ Sj, i ′ 6= i

i.e. Li is closed if there exists another sorting track that begins
with cars from the same destination as Li ends.

Lemma 3.6. Let Ŝ ∈ S and Ŝ ′ ∈ S be two head instances such that Ŝ
is a sub-instance of Ŝ ′. Then we have

Li ∈ L̂ = alg(Ŝ) is closed track

implies

Li ∈ L̂ ′ = alg(Ŝ ′)is closed track

i.e. a closed track remains closed and there will be no further cars placed
upon it by alg.



3.2 lower bound for det. online algorithms 33

Proof. Let

Li = (x1, . . . , xm) ∈ L̂

be a closed track in L̂, i.e. there is another track

Li ′ = (y1, . . . ,ym ′)

with xm,y1 ∈ Sj ∈ Ŝ. Now assume alg adds some of the new
cars of Ŝ ′ to Li i.e. there is a track

L ′i = (x1, . . . , xm, . . . , xm ′′) ∈ L̂ ′

instead of Li. But then the car xm could never connect to the car
y1 of its destination so the solution will not be valid. So track Li
must remain the same and will obviously still be a closed track.

Definition 3.7. For any problem solution L let

C(L) = |{Li ∈ L, Li is closed}|

be the number of closed tracks in L and

D(L) = |{Li ∈ L, |Li| = 2}|

be the number of tracks in L that accommodate exactly 2 cars.

In the following we will construct a bad head instance for an
arbitrary deterministic online algorithm alg. At each step of this
construction we will make sure that for the head sequence Ŝ and
its solutions L̂ = alg(Ŝ) will satisfy

1. |Li| 6 2 ∀Li ∈ L̂

2. Li = (x,y) or Li = (y), y ∈ Sj ∈ Ŝ, |Sj| = 2

⇒ Li is closed

(3.1)

i.e. there will be at most 2 cars per track and any track that ends
with a car of a destination where both cars are sent in Ŝ will be
closed. Note the following implication

Lemma 3.8. Condition 3.1 implies

Li = (x,y) : x ∈ Sj1 ∈ Ŝ, y ∈ Sj2 ∈ Ŝ⇒ j1 6= j2

i.e. there are no two cars of the same destination on any sorting track
in L.

Proof. Assume there would be such a sorting track Li, i.e.

Li = (x,y) : x,y ∈ Sj ∈ Ŝ

Then by point 2 in condition 3.1 we get that Li must be closed.
But for Li to be closed there must be a track Li ′ , i ′ 6= i beginning
with a car z ∈ Sj. But this means |Sj| > 3 which cannot be as we
have restricted ourselves to pair problem instances.



34 online problem

Furthermore we will make sure that in any step of our con-
struction either one of the two following conditions will hold:

D(L̂) = C(L̂) (3.2)

or

1. ∃Li ∈ L̂, Li = (x,y), x ∈ Sj ∈ Ŝ, |Sj| = 1

2.D(L̂) = C(L̂) + 1
(3.3)

Point 1 in condition 3.3 states that there is a sorting track in L̂
that carries 2 cars where the first one is of a destination whose
second car is not sent in Ŝ.

Lemma 3.9. Let alg be any deterministic online algorithm and let
Ŝ ∈ S be a head instance satisfying condition 3.1 as well as condition
3.3. Then there exists a head instance Ŝ ′ also satisfying condition 3.1
and either condition 3.2 or condition 3.3. Furthermore Ŝ ′ will satisfy

C(alg(Ŝ ′)) = C(alg(Ŝ)) + 1

Proof. Let Li = (x,y) be the track given by point 2 in condition
3.3, with x ∈ Sj ∈ Ŝ. Now set

Ŝ ′ = (Ŝ \ {Sj})∪ {Sj ∪ {n(Ŝ) + 1}}

i.e. we add the second car of destination Sj to the end of Ŝ.
Let

Li ′ ∈ L̂ ′ = alg(Ŝ ′)

be the sorting track upon which alg places the new car n(Ŝ ′)
(all other sorting tracks will remain the same as alg is an online
algorithm). Assume i ′ = i. In this case

Li = (x,y,n(Ŝ ′))

where x,n(Ŝ ′) ∈ Sj but y /∈ Sj (see Lemma 3.8). In this case L̂ ′

would be no valid solution, so i ′ 6= i.
But now by definition 3.5 Li ′ must be closed. So we get

C(L̂ ′) = C(L̂)) + 1

Using the same argument as before we can also assure that
|Li ′ | 6 2 as otherwise by Lemma 3.8 we know that Li ′ will carry
three cars of three different destinations. But the middle car will
never be able to connect to its second car making the solution
invalid.

This way we have also verified condition 3.1 (note that the only
changes may have appeared in track Li ′). Now we can have the
two following cases depending on the question if Li ′ now carries
one or two cars:



3.2 lower bound for det. online algorithms 35

case 1 : D(L̂ ′) = D(L̂)

In this case we have

D(L̂ ′) = D(L̂) = C(L̂) + 1 = C(L̂ ′)

so condition 3.2 is fulfilled and we are done.

case 2 : D(L̂ ′) = D(L̂) + 1

This implies

D(L̂ ′) = D(L̂) + 1 = C(L̂) + 2 = C(L̂ ′) + 1

so only point 1 in condition 3.3 remains to be verified.
Assume Li ′ does not satisfy point 1 in condition 3.3. Now as-

sume |Li ′ | = 1which would mean thatD(L̂ ′) = D(L̂) so we know
that Li ′ must be of the form

Li ′ = (x,n(Ŝ ′)) , x ∈ Sj ′ ∈ S, |Sj ′ | = 2

but then Li ′ must have been a closed track in L̂ by point 2 of
condition 3.1. Therefore alg could not have placed car n(Ŝ ′) on
Li ′ by Lemma 3.6.

So condition 3.3 must be satisfied which completes the proof.

Lemma 3.10. For any t ∈ N and any deterministic online algorithm
alg there exists a head instance Ŝ ∈ S with

t(S) = t = K(alg(Ŝ))

Proof. We will inductively generate such a sequence, depending
on the choices of alg. We will need to keep track of several of
the aforementioned conditions, so our induction hypothesis will
look as follows:

induction hypothesis For some t ∈N there exists a head
instance Ŝt ∈ S that satisfies condition 3.1 as well as condition
3.2.

induction basis We begin with the case t = 1. Obviously
our head instance will be

Ŝ1 = {{1}}

for which condition 3.1 and 3.2 will be trivially satisfied as there
will only be one sorting track with one car in L̂1 = alg(Ŝ1) and
no closed tracks. Therefore the induction hypothesis is fulfilled
for the case t = 1.



36 online problem

induction step Now assume the induction hypothesis is
fulfilled for t ∈ N and let Ŝt be a head instance satisfying the
conditions 3.1 and 3.2.

Now we enlarge Ŝt by a new destination whose first car is
added to the end of Ŝt:

Ŝt+1,1 = Ŝt ∪ {{n(Ŝt) + 1}}

As only adding a new destination might not be enough to ensure
the induction hypothesis, we will later generate a whole series
of Ŝt+1,i by adding cars of the already used t+ 1 destinations.
This will be done until the series reaches a point where the in-
duction hypothesis is fulfilled (which will always happen as we
will show later). This element of the series will then be chosen as
the new Ŝt+1. Note that this is the only point in the construction
where a new destination is added, so t(St) = t will always be
satisfied.

Let Li ∈ L̂t+1,1 = alg(Ŝt+1,1) be the track upon which alg
places the new car Ŝt+1,1. As Li ends with Ŝt+1,1 ∈ St+1 ∈
St+1,1 and |St+1| = 1 point 2 of condition 3.1 is fulfilled (remem-
ber that all other tracks than Li remain unchanged).

Assuming that |Li| = 3 would mean that Li will look like

Li = (x,y,n(Ŝt+1,1))

with cars x,y being of different destinations by Lemma 3.8 and
car n(Ŝt+1,1) being a completely new destination. But then L̂t+1,1

cannot be a valid solution as y could never connect to its second
car.

So condition 3.1 must be fulfilled for Ŝt+1,1.
As the car n(Ŝt+1,1) is of a new destination and is the only car

of this destination in Ŝt+1,1, there can be no new closed destina-
tions in L̂t+1,1:

C(L̂t+1,1) = C(L̂t)

Now we must look at the following two cases:

case 1 : D(L̂t+1,1) = D(L̂t)

This implies that

D(L̂t+1,1) = D(L̂t) = C(L̂T ) = C(L̂t+1,1)

so condition 3.2 is fulfilled and we are done by choosing

Ŝt+1 = Ŝt+1,1



3.2 lower bound for det. online algorithms 37

case 2 : D(L̂t+1,1) = D(L̂t) + 1

In this case we get that

D(L̂t+1,1) = D(L̂t) + 1 = C(L̂t) + 1

so point 2 of condition 3.3 is satisfied.
Furthermore we know that

Li = (x,n(Ŝt+1,1))

i.e. Li must be a track with two destinations or otherwise we
would be in Case 1. Now assume that

x ∈ Sj ∈ Ŝt+1,1, |Sj| = 2

then for x to be able to connect to the second car of its destination
there must be another track Li ′ ending with a car of destination
Sj. But this implies that Li was a closed track in L̂t and therefore

the car n(Ŝt+1,1) could not have been placed on Li. So we must
have |Sj| = 1 and condition 3.3 is satisfied.

Now we can use Lemma 3.9 to generate a sequence of head
instances in the following way:

̂St+1,i+1 is the instance generated by Lemma 3.9,

if Ŝt+1,i satisfies condition 3.3

If the sequence (Ŝt+1,i) has a last element Ŝt+1,i∗ , then this in-
stance must satisfy condition 3.2 by Lemma 3.9. So in this case
we are done by choosing

Ŝt+1 = Ŝt+1,i∗

Now assume that there is no such last element. But by Lemma
3.9 we have

C(alg( ̂St+1,i+1)) = C(alg(Ŝt+1,i)) + 1

which is impossible as there can be at most t+ 1 closed tracks,
i.e. one for each destination. This finishes the induction.

From the induction we know there exists a head instance Ŝt for
all t ∈N that satisfies

D(alg(Ŝt)) = C(alg(Ŝt))

As for each closed track there need to be 2 cars of the same
destination, so there must be C(alg(Ŝt)) destinations with two
cars and t(Ŝt) −C(alg(Ŝt)) destinations with one car in Ŝt.



38 online problem

This results in a total number of cars of

n(Ŝt) = 2 ·C(alg(Ŝt)) + t(Ŝt) −C(alg(Ŝt))

We also know there are D(alg(Ŝt)) tracks that carry two cars
which leaves

n(Ŝt) − 2 ·D(alg(Ŝt)) = t(Ŝt) −C(alg(Ŝt))

tracks that carry only one car (no track can carry more than two
cars by condition 3.1). So in total there must be

K(alg(Ŝt)) = D(alg(Ŝt)) + t(Ŝt) −C(alg(Ŝt)) = t(Ŝt)

tracks.

In Figure 8 one can see how the first four cars would be cho-
sen in the sequence generated in Lemma 3.10 depending on the
choices of the deterministic algorithm.

Theorem 3.11. There is no deterministic online algorithm for TMP

that is better than 2-competitive.
No det. online

algorithm is better
than 2-competitive Proof. We show that for each number k ∈ N there is a sequence

of cars such that any online algorithm alg will be at least 2k−1k
competitive.

We choose t = 2k− 1. Now by Lemma 3.10 we know there is
a head instance Ŝt with

t(Ŝt) = t = K(alg(Ŝt))

Now let St be any completion of Ŝt which means that

t(St) = t = K(alg(Ŝt)) 6 K(alg(St))

as Ŝt is a sub-instance of St.
Using Theorem 2.3 we know that

K(St) 6

⌈
n(St)

4
+
1

2

⌉
=

⌈
4k− 2

4
+
1

2

⌉
= k

Therefore alg can be at most 2k−1k competitive. As we can
choose k arbitrarily large, we get the following lower bound for
the competitive ratio of alg:

lim
k→∞ 2k− 1k = 2

In the next step we want to analyze the quality of different
algorithms for the online problem



3.2 lower bound for det. online algorithms 39

Send 1

1

2

3

1 3

2

1

2 3

1 2

1

Send 4 Send 1 Send 2 Send 3

Send 3 Send 1

1

2

1 2

Send 2

1

Figure 8: Example for the first four cars of the malicious sequence
depending on the choices of the algorithm



40 online problem

3.3 algorithms

3.3.1 Split

A main decision that has to be made by an algorithm for TMP

is when to split a destination between two sorting tracks. We
will now briefly discuss an online algorithm that always decides
to split a destination as early as possible and will see that this
behavior is not competitive.

The Split algorithm ([1]) will work by placing each car on
the earliest sorting track possible (if there is not already one
track that ends with the same destination - in which case the car
would be placed there). Note that there are the following three
possibilities where a car of destination d cannot be placed on
track i:

• Track i ends with a destination d ′ different to d that is
already split. Then placing the new car on i would make it
impossible to join destination d ′.

• Track i has already two different destinations d1 and d2
placed upon it, where d2 6= d is the destination of the last
car on i. Furthermore we assume that the last car of d2 was
not sent yet. Then placing the new car on i would make it
impossible to join destination d2.

• Placing the new car on i would create a cycle. This means
there is a sequence of sorting tracks (Lnj)16j6J, where
nJ = i that needs to be joined consecutively. If now the
first car of Ln1 is of destination d the sorting tracks would
need to be joined in a circle for all destinations to be joined.
Also see Example 3.12 for an illustration of this case.

Example 3.12. Consider the problem instance S with

TS = (1, 2, 3, 1, 2, 3)

Here Split would place the first two cars 1 and 2 on sorting track
L1, then the cars 3 and 1 on track L2. The next car 2 would
again be placed on L1. Until now, we need to join the tracks in
the order (L2,L1) for the cars of destination 1 to connect in the
outgoing sequence. Therefore we cannot place the last car 3 on
L1 as this would also require us to join the tracks in the order
(L1,L2) for destination 3 to be joined. To avoid this cycle, the last
car must be placed on L3.

Algorithm 5 now shows how the Split algorithm works. Note
that we do not bother with the details on how to check if a car
can be placed upon a certain track i as these details will not be
of interest in the rest of this section.

We now show that Split is uncompetitive



3.3 algorithms 41

Algorithm 5 The Split algorithm

for all arriving car d do
if ∃ sorting track i ending with cars of same destination as
d then

Place d on i
else

for all already used sorting track i do
if d can be placed on i then

Place d on i
end if

end for
if d was not placed so far then

Place d on new sorting track
end if

end if
end for

Split is not
competitiveTheorem 3.13. There does not exist a constant c such that Split is

c-competitive

Proof. Assume there is such a constant c. Now choose t = 3 ·c+1
and consider the following problem instance

S = {{1, 4}, {2, 2 · t},Si | 3 6 i 6 t}

where for 3 6 i < t we have

Si = {2 · i− 3, 2 · i}

and for i = t

St = {2 · t− 3, 2 · t− 1}

i.e. the incoming sequence will look as follows

TS = (1, 2, 3, 1, 4, 3, 5, 4, 6, 5, . . . , t, t− 1, t, 2}

Given this sequence, Split will place all the cars on the first
available sorting track. So the first two cars 1 and 2will be placed
on L1. No more cars can be placed here, as the second car of des-
tination 2 arrives last. The next two cars 3 and 1 will be placed
on L2. Again no more cars can be placed here as L2 now has
to connect to L1 so that destination 1 can be joined. The same
way all other cars are placed in tuples on the sorting tracks. The
second car of destination t will therefore be placed on track Lt.

Also see Figure 9 for an illustration on how Split will dis-
tribute instance S to the sorting tracks.

So Split uses in total

K(Split(S)) = t = 3 · c+ 1



42 online problem

Input sequence: 1 2 3 1 4 3 5 4 6 5 … t t-1 t 2

4 3

5 4

6 5

3 1

t t-1

1 2 2

t

Solution:

Split

Figure 9: Malicious problem instance for the Split algorithm

sorting tracks. Note that u(S) = 3, therefore by Theorem 2.4 the
optimal solution needs at most 3 sorting tracks. This leads to a
lower bound on the competitive ratio for Split of

c >
K(Split(S)

K(S)
=
3 · c+ 1
3

> c

which is a contradiction.

It seems as if the decision to split a destination in the online
case always opens a way to construct a malicious sequence that
exploits the fact that any split destination leads to a track that
is unusable in the future sorting process. Therefore we will now
consider an algorithm that never splits any destination.

3.3.2 Unsplit

As we have already seen in the proof of Theorem 2.4, we can
sort any instance S to u(S) sorting tracks. Note that Algorithm 2

decides about a destinations coloring the moment its first car ar-
rives, without looking at the rest of the train. The only additional
knowledge Algorithm 2 needs, is the information if a car is the
last of its destination, which is available in our online scenario
(see Theorem 3.3). Therefore we can use this algorithm to make
an online decision about the placement of the cars. Algorithm 6

shows a version of Algorithm 2 that has been modified for the
online scenario. The algorithm is named Unsplit, as it never di-
vides a destination between two sorting tracks in contrast to the
Split algorithm in Section 3.3.1.



3.4 randomized online algorithms 43

Algorithm 6 The Unsplit algorithm

for all arriving car d do
if ∃ track x with cars of same destination as d then
z← x

else
if ∃ track x marked as open then
z← x

else
open a new track z

end if
end if
place d on z
if ISLAST(d) then

mark z as open
else

mark z as closed
end if

end for

Theorem 3.14. Unsplit is 2-competitive.

Proof. We have already seen in Theorem 2.4 that Unsplit uses at
most K(S) sorting tracks. Using this and Theorem 2.9 we get

K(Unsplit(S))
K(S)

6
u(S)

du(S)+12 e
6 2

for any problem instance S ∈ S. Unsplit is therefore 2-competitve.

Unsplit is
2-competitive and
therefore optimal

As by Theorem 3.11 there cannot be an algorithm that achieves
a better competitve ratio, we know that Unsplit is optimal in
terms of competitive analysis.

3.4 randomized online algorithms

Now that we have found an optimal algorithm from the class
of deterministic online algorithms, it would be interesting to
know if we can derive similar results for randomized online algo-
rithms. Unluckily showing lower bounds for randomized online
algorithms becomes much harder, as we do not know the algo-
rithms choices in advance. Therefore constructing a malicious
sequence as before is not possible, at least not in the determinis-
tic way we used in Section 3.2.

For example we can find a lower bound for randomized online
algorithms in the following way:

Theorem 3.15. There is no randomized online algorithm for TMP that
is better than 5

4 -competitive.



44 online problem

Proof. We will use Yao’s principle (see [3]), i.e. we will generate
a probability distribution over different problem instances and
show that the expected outcome over these instances will not be
better than 5

4 for any deterministic online algorithm.
The input sequence will be as follows: with probability 1

2 we
will send either the problem instance S1 with

TS1 = (1, 2, 3, 1, 2, 3)

or S2 with

TS2 = (1, 2, 3, 2, 1, 3)

Note that by Theorem 2.9 no algorithm can sort these instances
with less than 2 sorting tracks as u(S1) = u(S2) = 3.

Next we show that any deterministic online algorithm can
only sort either one of the two instances to 2 sorting tracks. Af-
ter the arrival of the first three cars, the algorithm could have
made three different choices on how to place the cars without
exceeding 2 sorting tracks. Either place car 1 and 2 on the same
track or 1 and 3 or 2 and 3. Depending on the choice made here
the algorithm will have to open a new track for at least one of
the sequences S1 or S2. Figure 10 shows the possible options for
placing the remaining cars for each problem instance.

So any deterministic algorithm can only achieve 2 sorting tracks
with a probability of 12 and therefore the expectation of its num-
ber of sorting tracks is at least

1

2
· 2+ 1

2
· 3 = 5

2

As we know that both instances can optimally be sorted using 2
tracks, this leads to an expected competitive ratio of

5
2

2
=
5

4

which is a lower bound for the competitive ratio of any random-
ized online algorithm for TMP by Yao’s principle.

Obviously a lower bound of 54 is a rather weak result com-
pared to the bound of 2 we get by Theorem 3.11. By using more
and longer problem instances we might get better results. But
then we still need to find a randomized algorithm that achieves
a better competitive ratio than 2. This task is difficult as any
choice to split a destination opens a way to construct a mali-
cious sequence for this algorithm. So this question remains open
for future research.



3.4 randomized online algorithms 45

Sequence S
1
: (1,2,3,1,2,3)

Sequence S
2
: (1,2,3,2,1,3)

1 2

3

1 3 

2

1

2 3

1 2 2

3 1

3

1 2 2

3 3

1

1 3 3

2 1

2

1 3 3

2 2

1

1 1 2

2 3 3

1 2

3

1 3 

2

1

2 3

1 2 2

3 1

3

1 2 2

3 3

1

1 2

2 3 3

1

1 1

2 3 3

2

1 3 3

2 2 1

Figure 10: Possible choices for S1 and S2





4
C O M P U TAT I O N A L R E S U LT S

4.1 underlying probability space

To perform any kind of average case analysis we first need to
define a probability space of instances so that we can calculate
expectations on the performance of our algorithms. As we want
to draw random instances from this space for experimental use,
we further need to construct an algorithm that will produce ran-
dom instances according to the specified distribution.

Obviously an uniform distribution on all instances will not
work as the size of the instances is unbounded. This leads us to
defining instance spaces with a fixed instance size:

Definition 4.1. Let Sn be the space of all TMP instances with
exactly n cars. That means S ∈ Sn ⇔ n(S) = n.

This now leads us to the definition of a probability space based
on Sn

Definition 4.2. In the following we will use the probability space
Sn = (Ω,F,P) with

Ω = Sn

F = 2Sn

P(A) =
#A
#Ω

So we will consider the discrete uniform distribution on Sn.
We will consider
random instances
drawn uniformly
form all instances
with length n

Now we need to construct a method to choose uniformly from
Sn. To do so, we will take a look at the number of possible in-
stances that are left when fixing a certain number of cars in the
sequence. This way we will get the probabilities for each possi-
ble choice for each car of the sequence. Therefore the algorithm
can choose the cars one by one according to the obtained proba-
bilities.

For example in the case of S3 we have 5 possibilities in total.
If we choose destination 2 as the second car we are left with
3 possibilities, if choosing destination 1 there are 2 possibilities
left (see figure 11). So in the case of n = 2 we would first set car
number 1 to be of destination 1 (this is always the case) and then
choose destination 1 with probability 2

5 and destination 2 with
probability 3

5 .

47



48 computational results

111 112 121 122 123

11 12

1first car:

second car:

third car:

Figure 11: Possibilities when generating a sequence in S3

So after fixing the first l cars, we want to calculate the number
of possibilities for the remaining n− l cars. In the following we
will call this final part of a train a tail-sequence.

For each car in the sequence we can either choose one of the
destinations that were already sent (first case) or the next new
destination (second case). If we decide for the first case, it does
not matter, which of the destinations is actually sent as will be
shown now:

Lemma 4.3. If we have already fixed the first l − 1 cars and have
used t different destinations so far (t 6 l − 1), then the number of
possible tail-sequences stays the same for any choice of the lth car from
{1, . . . , t}.

Proof. A tail-sequence that is a valid if we choose the lth car to
be of destination d ∈ {1, . . . , t} remains valid for any other choice
d ′ ∈ {1, . . . , t}. So the total number of possible tail-sequences is
always the same.

Each of the old
destinations can
appear with the

same probability

This means the first thing we need to decide is whether we
choose a car of a new destination or of one of the destinations
that were already used. In the later case we can choose the des-
tination uniformly from {1, . . . , t}.

So at each step it only matters if we add a new destination or
if the number of used destinations t stays the same. Therefore it
should be sufficient to keep track of the number of already sent
cars, which we denote by l, and the number t of destinations
that we used so far. We now define a function P that works on
exactly these parameters and that will later be shown to produce
the number of possible tail-sequences.

Definition 4.4. For t 6 l let

P(t, l) = P(t+ 1, l+ 1) + t · P(t, l+ 1)

where

P(t, l) = 1 ∀l > n



4.1 underlying probability space 49

Listing 1: Matlab code to generate a table with values for the possibil-
ity function P

for l=n:-1:1

for t=1:l

if (l>=n)

P(t,l)=1;

else

P(t,l)=P(t+1,l+1)+t*P(t,l+1);

end

end

end �
P is well defined, as the parameter l is growing with each

recursion, so it must be equal to n after a finite time.

Theorem 4.5. P(t, l) gives us the number of possible tail-sequences if
we fix the first l cars and have used t destinations so far.

Proof. If l = n we have fixed all n cars, so our only choice for
the tail-sequence is the empty sequence. Therefore P is correct in
this case by definition.

We now want to show that P gives the correct results by recur-
sion. Therefore assume that P(t, l) is correct for all l > L+ 1 and
all t 6 l, for some L < n.

Then for any t 6 L we want P(t,L) to be the number of possi-
ble tail-sequences if we used t destinations so far and fixed the
first L cars. As we have seen before we can either choose the
L+ 1-st car to be of destination t+ 1 or to be of one of the des-
tinations in {1, . . . , t}. All choices from the later case are equal
by Lemma 4.3. As we assumed P to yield correct results when
fixing the first L+ 1 cars, we now have in total

P(t+ 1,L+ 1) + t · P(t,L+ 1)

possible tail-sequences.
Now the claim follows by recursion.

As calculating P by recursion would take up to 2n steps we
need a more clever way to get the values of P. As there are less
than n2 possible values for P we can generate a table of all values
in advance. This can be done in O(n2) time. A matlab example
for this is shown in Listing 1.

Now that we know P we can use it to generate a uniform
random sequence car by car. We just need to keep track of l
and t and lookup the respective values of P we generated before.
Again a matlab example for this is shown in Listing 2.

The algorithm shown in Listing 2 works the following way. For
each car l we decide whether it is of a new or an old destination,



50 computational results

Listing 2: Matlab code to generate uniformly distributed random in-
stances of length n

sequence(1)=1;

t=1;

for l=2:n

if (rand < (t*P(t,l)/P(t,l-1)))

sequence(l)=randi(t);

else

t=t+1;

sequence(l)=t;

end

end �
i.e. of destination t+ 1 or in {1, . . . , t}. The probability to choose
an old destination is calculated as

t · P(t, l)
P(t, l− 1)

i.e. the number of possibilities we would have after assigning an
old destination to car l divided by the number of total possibil-
ities there are now. In case we decide for one of the old desti-
nations, we choose the car uniformly from {1, . . . , t} (by Lemma
4.3) otherwise it is chosen to be of destination t+ 1. Note that
once we have calculated the lookup-table for P we can generate
uniform random instances in linear time.

We can also look at these results in the following way: As
every problem instance S is a partition of the set

{1, 2, . . . ,n(S)}

and the procedure above can generate any partition of this set
with equal probability we now have a method at hand that uni-
formly draws a random partition of the set {1, . . . ,n}. Also note
that the number P(1, 1) from the pre-generated table (for exam-
ple in listing 1) therefore gives the total number of possible set
partitions of a set of size n. This means it is equal to the n-th
Bell number Bn [14].

4.2 results

Now that we know how to generate the uniformly distributed
problem instances we will perform some computational experi-
ments. We will analyze the performance of the different bounds
from Section 2.2, namely the upper bounds we get from Theo-
rem 2.3 (in the figures denoted by n-UB) and Theorem 2.4 as



4.2 results 51

well as the lower bounds from Theorem 2.9 (in the figures de-
noted by u-LB) and Theorem 2.11 (in the figures denoted by
Disjoint Sub-instance Bound - DSIB). In the last case the bound
was calculated using Algorithm 3. Furthermore we will compare
the performance of the two online algorithms from Section 3.3,
i.e. the Split and the Unsplit Algorithm. Note that Unsplit and
Theorem 2.4 return the same number of sorting tracks.

We will use sample instances of length n = 50 and n = 100.
Figure 12 and Figure 13 each show the number of sorting tracks
used by the algorithms or given by the bounds for 100 uniformly
and independently chosen problem instances, as well as the op-
timal values K(S).

Table 1 and 2 show in the second column the average results,
i.e. our estimate for the expected result on instances from S50

and S100. Each time the average was taken over 5000 indepen-
dently generated random instances.

The third column shows the average ratio between the algo-
rithms or the bounds output and K(S), i.e. the value

5000∑
i=1

Output(Si)
K(Si)

5000

where output(Si) is the respective output of the algorithm or
bound for the i-th problem instance.

Finally in the fourth column 95% confidence intervals L are
given for the results, i.e. we expect the actual value for the ex-
pected output to be no more than L away from the calculated
average with 95% probability. The value L is calculated as

L = Φ−1(1−
0.05
2

) ·
√

V

5000

where Φ−1 is the inverse of the cumulative distribution function
of the normal distribution and V is the unbiased estimate for the
variation obtained from the resulting data, i.e.

V =
1

5000− 1

5000∑
i=1

(Output(Si) −Avg)
2

where Avg is the mean value from the second column.
For more information on the underlying theory of estimating

expectations and confidence intervals the reader may be referred
to [12].

Observe that the two lower bounds provide results that are
already very close to the optimum. On the other hand there is
still a quite big gap between the optimal results and the upper
bounds. Here might be an area where good heuristics can be
applied in future work.



52 computational results

Note that Split an Unsplit perform almost equal (Split actually
gives slightly better results) even though Split is not competitive
and there exist problem instances such that Split returns arbitrar-
ily bad results.

Also we can see that the upper bound obtained by Theorem
2.3 (dn(S)4 + 1

2e) tends to strongly overestimate K(S) in most
cases. Therefore it might not be a good choice in application,
except of course for the special instance classes, where it has a
better performance (see Section 2.3.1).



4.2 results 53

0 10 20 30 40 50 60 70 80 90 100
5

6

7

8

9

10

11

12

13

14

Problem instances

us
ed

 tr
ac

ks

 

 

K(S)
u−LB
DSIB

n−UB
u(S)
Split

Figure 12: Comparing bound and algorithm results for 100 instances
in S50

0 10 20 30 40 50 60 70 80 90 100

8

10

12

14

16

18

20

22

24

26

28

Problem instances

us
ed

 tr
ac

ks

 

 

K(S)
u−LB
DSIB

n−UB
u(S)
Split

Figure 13: Comparing bound and algorithm results for 100 instances
in S100



54 computational results

Mean avg. ratio to K(S) L

K(S) 7.4794 1 0.0184

du(S)+12 e 6.4984 0.8702 0.0206

DSIB 6.5892 0.8829 0.0176

dn(S)4 + 1
2e 13 1.7521 0

u(S) 11.5086 1.5400 0.0388

Split 10.9096 1.4632 0.0375

Table 1: Average results over 5000 repetitions for different bounds and
algorithms over uniform random instances of length n = 50

Mean avg. ratio to K(S) L

K(S) 13.2580 1 0.0230

du(S)+12 e 11.3912 0.8596 0.0270

DSIB 11.5542 0.8721 0.0233

dn(S)4 + 1
2e 26 1.9689 0

u(S) 21.2930 1.6064 0.0523

Split 20.3490 1.5370 0.0505

Table 2: Average results over 5000 repitions for different bounds and
algorithms over uniform random instances of length n = 100



5
P R O B L E M VA R I AT I O N S

5.1 fixed number of tracks

Here we will consider the case when we only have a fixed num-
ber of tracks K available for marshalling (fixed tracks TMP). Ob-
viously we can not expect to be able to sort all cars (except of
course, if K > K(S)). So the goal will be to find a solution, such
that a maximal number of destinations can be sorted completely,
i.e. we allow destinations to be thrown away. Therefore we can
define the optimal objective in the following way Maximize the

number of
destinations that can
be placed on a fixed
number of sorting
tracks

Definition 5.1. For any problem instance S ∈ S we denote with
TK(S) the maximal number of destinations that can be sorted
using K sorting tracks.

Using the results we already obtained for the original TMP

we can now get corresponding results for the fixed tracks TMP.
Again we will look at the offline as well as the online case.

5.1.1 Offline Problem

First note that as in the case of the classical TMP finding TK(S)
is NP-hard in general. This is clear as otherwise we could easily Fixed tracks TMP is

NP-harddetermine the smallest K such that TK(S) = t(S), using bisection.
But as before we can find a lower bound on the optimal objective
value.

Theorem 5.2. For all S ∈ S and K 6 u(S) we have

TK(S) > d
K · t(S)
u(S)

e

Proof. Let L = (L1, . . . ,LK(S)) be a solution for the classical TMP

that was obtained in the way of Theorem 2.4, i.e. the cars are
arranged corresponding to a coloring of the interval graph GS.
This also means that there are no split destinations. Now let

(ni)i∈{1,...,K}

be the indices of the K sorting tracks that hold the most destina-
tions. Obviously sorting the cars as they are placed on the Lni is
a solution to fixed tracks TMP, so we have

TK(S) >
K∑
i=1

t(Lni)

55



56 problem variations

where t(Lni) is the number of destinations that is placed upon
Lni . As we use the solution from the interval coloring approach
we do not need to worry about split destinations in this case.

Furthermore the Lni obviously hold at least as many cars on
average as the original u(S) sorting tracks:

1

K

K∑
i=1

t(Lni) >
1

u(S)

u(S)∑
i=1

t(Li) =
t(S)

u(S)

(the last equality holds as every destination appears on one of
the sorting tracks of L). Multiplication with K now yields

TK(S) >
K∑
i=1

t(Lni) > d
K · t(S)
u(S)

e

where the ceiling function comes from the fact that the middle
term must be an integer number.

5.1.2 Online Problem

Again we can consider the corresponding online problem. But
despite of the results we got in Chapter 3 for the original TMP we
cannot get a competitive online algorithm for the variation with
a fixed number of tracks. Not even when using randomization:

Theorem 5.3. There is no competitive randomized online algorithm
for fixed tracks TMP

No online algorithm
is competitive for
fixed tracks TMP Proof. In this proof we will fix the number of usable tracks to

K = 1. Let alg be any randomized online algorithm for fixed
tracks TMP and let 1 > p > 0. Then construct a sequence of cars
the following way:

Let i = 1. Now repeat the following steps n times:

• add a car with destination i.

• if alg places i on the sorting track with probability less
than p then add a second and last car of destination i. We
call those blocks coupled destinations.

• set i = i+ 1.

Till now we call the sequence TS
′
n . We generate a first complete

sequence TS
1
n by adding the remaining second cars that were not

sent so far.
When given sequences of the type TS

1
n to alg there are two

cases
1. case: There is no n such that alg takes any of the uncoupled

destinations with probability greater or equal 1− p.



5.2 using an auxiliary track 57

This means for any n there are at most 1p uncoupled destina-
tions. In this case alg sorts less than pn destinations on average
while at least n− 1

p destinations (the coupled ones) are optimal.

So for TS
1
n alg achieves a competitive ratio of more than

n− 1
p

pn
=
1

p
−

1

p2n

n→∞→ 1

p

2. case: There is such an n.
Now we generate another sequence based on TS

′
n :

TS
2
n = (TS

′
n ,n+ 1,n+ 1,n+ 2,n+ 2, . . . ,m,m, ∗)

where ∗ stands for the missing second cars we also added at
the end of TS

1
n . Here sorting at least m− (n+ 1) cars is optimal

while alg achieves on average at most

p(m− (n+ 1)) + (1− p) + pn

leading to a competitive ratio of at least

m− (n+ 1)

p(m− (n+ 1)) + (1− p) + pn
=

1

p+
(1−p)+pn
m−(n+1)

m→∞→ 1

p

Therefore in both cases alg cannot be better than 1
p competi-

tive. As we can choose p arbitrarily small in the beginning we
get that alg is not competitive.

5.2 using an auxiliary track

Now we will consider a modified version of the original TMP,
where we are allowed to use an auxiliary track of capacity m on
which cars can be stored before passing the switches. If a car is
stored on the auxiliary track it can be rolled over the hump and
sorted to the classification tracks at any later time, allowing for
other cars to be sorted first. Of course the order of cars on this
auxiliary track cannot be interchanged. That means the auxiliary
track can be seen as some kind of first-in-first-out buffer. See
figure 14 for schematic picture of this modified hump yard.

To see how the new track can affect the number of necessary
tracks we will calculate some bounds based on the number of
tracks used in the original problem. First we will show that an
auxiliary track with infinite capacity will always (except for the
trivial case with K(S) = 1) save at least one track.

Theorem 5.4. For any TMP instance S ∈ S with K(S) > 2 we can
save at least one track using an auxiliary track with capacity m = ∞.

An auxiliary with∞ capacity saves at
least one track



58 problem variations

m

Figure 14: Schematic hump yard with auxiliary track of capacity m

Proof. Let S ∈ S be any TMP instance with K(S) > 2. Then in the
final sorting for the original TMP let i be the last and j the second
last classification track from which the cars will be pulled out.

Now we can place all the cars form i on the auxiliary track
and place them on track j after all other cars where sorted. This
way we only need K(S) − 1 tracks in total.

Next we can show that an auxiliary track of infinite capacity
can, in the best case, save an arbitrary amount of tracks.

Theorem 5.5. For all o ∈N there exists a sequence S ∈ S such that an
auxiliary track with capacity m = ∞ will save at least o classification
tracks.

An auxiliary track
with ∞ capacity can

save arbitrarily
many tracks

Proof. Let S be a sequence of cars with

TS = (1, 2, . . . , 2o+ 1, 1, 2, . . . , 2o+ 1)

As u(S) = 2o+ 1 we know from Theorem 2.9 that

K(S) > du(S) + 1
2

e = d2o+ 2
2
e = o+ 1

Now using our modified model we can place the first 2o + 1
cars on the auxiliary track. Now we can alternately place one
car from the remaining sequence and one car from the auxiliary
track on exactly one classification track. Therefore we saved at
least o tracks.

Next we consider the case where m < ∞. Allowing arbitrary
instances in this case we can always find instances where the
auxiliary track will have no effect on the optimal solution:

Theorem 5.6. For any m,k ∈N there exists a sequence of cars S ∈ S

such that even using the auxiliary track of capacity m we will use at
least K(S) > k classification tracks.

Proof. First we need a sequence S ′ ∈ S with K(S ′) = k. For exam-
ple we can take

TS
′
= (1, 2 . . . , 2k− 1, 1, 2, . . . , 2k− 1)



5.3 multiple sorting steps 59

where as before Theorem 2.9 assures that K(S ′) > k.
Now we construct a new sequence S from S ′ by simply repeat-

ing every car m+ 1 times. Obviously this renders the auxiliary
track useless as it only has capacity m but would need to store
m+ 1 cars to have a positive effect on the sorting process. There-
fore we will still need at least K(S) > k tracks.

Even though the auxiliary track may save a lot of sorting
tracks, depending on the incoming sequence and the capacity
of the auxiliary track, it might be a time consuming task to use
the track. This is mainly because now some of the cars need to be
placed on the auxiliary track first, while later the cars have to be
brought to the sorting tracks from two different tracks. This way
one might need many more additional operations than simply
pushing all cars over the hump in one row.

5.3 multiple sorting steps

Next we will consider the case, where we allow the incoming
train to be sorted in multiple marshalling steps. This means we
use the outgoing train of step i as the incoming train in step i+ 1.
Obviously the outgoing train in every but the last step does not
have to be sorted by destinations.

Defining the corresponding online problem in this case is not
as easy as for the original TMP. For example one might con-
sider the case, where all cars arrive before finishing the first
marshalling step or the case where cars can arrive at any time
throughout the sorting process. As it seems that there is no intu-
itive way to deal with this, we will not further discuss the online
case of this problem variation.

Definition 5.7. For the TMP with multiple sorting steps let Kq(S)
be the minimal number of necessary tracks to sort S in q steps.

Of course we have K1(S) = K(S). Next we will show that mul-
tiple sorting steps can reduce the number of necessary tracks by
an approximate factor equivalent to the number of steps:

Theorem 5.8. For all S ∈ S and q ∈N we have

Kq(S) 6 d
K(S) − 1

q
e+ 1

q sorting steps can
reduce tracks by
approximately a
factor q

Proof. This can be shown by constructing a valid solution for the
multiple stage problem based on an optimal solution from the
original TMP. Let L1, . . . ,LK(S) be the sorting tracks necessary to
optimally solve S.



60 problem variations

For our new solution we want to use only tracks L ′1, . . . ,L ′o+1,
with

o = dK(S) − 1
q

e

In the first step we will place the cars from Li on track L ′i
for all i ∈ {1, . . . ,o}. All other cars will be stored on track L ′o+1.
The outbound train of this step will consist of a sorted part in the
beginning and an unsorted part at the end. Now in the following
steps we can continue accordingly. In step j we first place the
already sorted part of the incoming train on L ′1. Afterwards all
cars from Li+(j−1)·o will be placed on L ′i for all i ∈ {1, . . . ,o}.
Again all remaining cars will be placed on L ′o+1. As there will
be no remaining cars in step q, track L ′o+1 can also be used for
sorting. So in total we can handle

q · o+ 1 = qdK(S) − 1
q

e+ 1 > K(S)

of the original sorting tracks, therefore arriving at a feasible so-
lution for the multiple sorting steps problem.

Example 5.9. Figure 15 shows an example how a problem in-
stance can be sorted in the way of Theorem 5.8. The problem
instance is a pair problem instance with maximal overlapping
destinations. Therefore Algorithm 4 will generate an optimal so-
lution that uses K(S) = 7 sorting tracks. Using the procedure of
Theorem 5.8 we only need

d7− 1
2
e+ 1 = 4

sorting tracks.

Using multiple sorting steps can be a good way to deal with a
constraint on the total number of sorting tracks available. In real-
ity it might be simply impossible to sort a train according to the
TMP model as for a certain problem instance S there might not be
K(S) sorting tracks that are usable. In this case one might want
to take a solution that works with a reduced number of sorting
tracks - and is therefore feasible in reality - but needs more sort-
ing steps. Here one accepts the increased time necessary for the
additional couplings and decouplings.



5.3 multiple sorting steps 61

2 2 1

1 3 3 4

4 5 5 6

6 7 8 9 10 11 12 11 10 12 8 7 9

2 2 1 1 3 3 4 4 5 5 6 6 8 8 7

7 10 10 9

9 11 11

12 12

1 2 3 4 5 6 7 8 9 10 11 12 3 5 2 11 1 10 12 8 7 9 4 6

2 2 1 1 3 3 4 4 5 5 6 6 7 8 9 10 11 12 11 10 12 8 7 9

2 2 1 1 3 3 4 4 5 5 6 6 8 8 7 7 10 10 9 9 11 11 12 12

Figure 15: Example for multiple sorting steps





6
C O N C L U S I O N S

In this thesis we have taken a closer look at the train marshalling
problem. Regarding the fact that solving TMP in general is NP-
hard (see Theorem 2.1) we state some lower and upper bounds
on the optimal objective value. In this thesis we derive a new
lower bound using graph theoretical properties of the problem
instance (see Theorem 2.11). The bound can be calculated in
polynomial time by searching for maximal cliques in subgraphs
of the problem as it is done by Algorithm 3.

Next we looked at problem instances and problem restrictions
that can be solved in polynomial time. On the one hand we have
instances for which one of the lower and upper bounds are equal.
Here we could derive fast algorithms to solve the instances opti-
mally. On the other hand we showed that fixing the number of
destinations or the number of overlapping destinations makes
it possible to solve the problem in polynomial time (though not
necessarily fast).

Furthermore we considered the online version of TMP. Here
we can show that the best possible deterministic online algo-
rithm (Algorithm 6) is based on a simple interval coloring scheme
and uses at most two times as many sorting tracks as necessary.

When comparing the results from Chapter 4 we saw that the
two lower bounds from Section 2.2 tend to be quite close to the
optimal value K(S), while there is still some gap to the upper
bounds.

In the last chapter we looked at some variations of TMP and
gave some bounds on their objective values. As the variations are
closely related to the original problem we get bounds that are
based on the results we got in chapter 2. For example we found
out that there is no competitive online algorithm for the problem
with a fixed number of sorting tracks and that using multiple
sorting steps leads to a reduced number of sorting tracks in most
of the cases.

6.1 open questions

There are several question that still remain unanswered and that
might be of interest for future research.

• What complexity does TMP have, if we fix or bound the
number of cars per destination? Throughout this thesis we
have often worked with pair problem instances, but still
we do not know if a restriction to this problem class can

63



64 conclusions

be solved in polynomial time or if there is an NP-hardness
proof for it.

• In the online case of TMP one might be interested in a good
lower bound for randomized online algorithms. Showing
lower bounds in this case is much more difficult than in the
deterministic case, as one can not be sure on the choices
of the algorithm when constructing a bad input sequence.
Therefore it would be interesting to know if there is a
randomized online algorithm that is strictly better than 2-
competitive. See also Section 3.4.

• It might be interesting to see if the auxiliary track from
Section 5.2 can improve the lower bound on deterministic
online algorithms for TMP, i.e. if there is a better than 2-
competitive deterministic online algorithm that utilizes an
auxiliary track.

• One might wish for better results in the multiple sorting
step variation from Section 5.3. For example it would be
interesting to know if there is a better bound than in The-
orem 5.8 or if one can generate sequences for which it is
always sharp.

• In Chapter 4 we used uniformly distributed instances to
get an idea about the average case performance of the dif-
ferent bounds and algorithms. It would be interesting to
see the performance on different sets of real world data.



B I B L I O G R A P H Y

[1] Katharina Beygang. personal communication. to appear in
Katharina Beygang’s dissertation.

[2] Ulrich Blasum, Michael R. Bussieck, Winfried Hochstättler,
Christoph Moll, Hans-Helmut Scheel, and Thomas Win-
ter. Scheduling trams in the morning. Mathematical Meth-
ods of Operations Research, 49:137–148, 1999. ISSN 1432-
2994. URL http://dx.doi.org/10.1007/s001860050018.
10.1007/s001860050018.

[3] Allan Borodin and Ran El-Yaniv. Online Computation and
Competitive Analysis. Cambridge University Press, 1998.

[4] Serafino Cicerone, Gianlorenzo D’Angelo, Gabriele Di Ste-
fano, Daniele Frigioni, and Alfredo Navarra. Robust algo-
rithms and price of robustness in shunting problems. In
Proceedings of the 7th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization and Systems (ATMOS),
pages 175–190, 2007.

[5] Elias Dahlhaus, Peter Horák, Mirka Miller, and Joseph F.
Ryan. The train marshalling problem. Discrete Applied Math-
ematics, 103(1-3):41–54, 2000.

[6] Elias Dahlhaus, Fredrik Manne, Mirka Miller, and Joseph F.
Ryan. Algorithms for combinatorial problems related to
train marshalling. AWOCA, pages 7–16, 2000.

[7] Michael Gatto, Jens Maue, Matúš Mihalák, and Peter Wid-
mayer. Shunting for dummies: An introductory algorith-
mic survey. In Ravindra Ahuja, Rolf Möhring, and Chris-
tos Zaroliagis, editors, Robust and Online Large-Scale Op-
timization, volume 5868 of Lecture Notes in Computer Sci-
ence, pages 310–337. Springer Berlin / Heidelberg, 2009.
URL http://dx.doi.org/10.1007/978-3-642-05465-5_13.
10.1007/978-3-642-05465-5_13.

[8] U. I. Gupta, D. T. Lee, and J. Y.-T. Leung. Efficient algo-
rithms for interval graphs and circular-arc graphs. Networks,
12:459–467, 1982.

[9] Donald Ervin Knuth. The Art of Computer Programming, vol-
ume 3. Addison-Wesley Publishing Company, 1973.

[10] Christian Liebchen, Marco Lübbecke, Rolf Möhring, and Se-
bastian Stiller. The concept of recoverable robustness, linear

65

http://dx.doi.org/10.1007/s001860050018
http://dx.doi.org/10.1007/978-3-642-05465-5_13


66 bibliography

programming recovery, and railway applications. In Robust
and Online Large-Scale Optimization, pages 1–27. Springer,
Heidelberg, 2009.

[11] Christian Lindecke. Ablaufberg.png, 2009. URL
http://upload.wikimedia.org/wikipedia/commons/8/

8f/Ablaufberg.png.

[12] Thomas Müller-Gronbach, Erich Novak, and Klaus Rit-
ter. Monte Carlo-Algorithmen. Springer-Lehrbuch. Springer,
2011.

[13] Stephan Olariu. An optimal greedy heuristic to
color interval graphs. Information Processing Let-
ters, 37(1):21–25, 1991. ISSN 0020-0190. doi:
DOI:10.1016/0020-0190(91)90245-D. URL http://www.

sciencedirect.com/science/article/B6V0F-45GMFHF-2J/

2/7fbdc1de385b1809910f81e6c9e21deb.

[14] Gian-Carlo Rota. The number of partitions of a set.
The American Mathematical Monthly, 71(5):pp. 498–504, 1964.
ISSN 00029890. URL http://www.jstor.org/stable/

2312585.

[15] M.W. Siddiqee. Investigations of sorting and train forma-
tion schemes for a railroad hump yard. In Proceedings of the
5th International Symposium on the Theory of Traffic Flow and
Transportation, pages 377–387, 1972.

[16] Gabriele Di Stefano and Magnus Love Koci. A graph
theoretical approach to the shunting problem. Elec-
tronic Notes in Theoretical Computer Science, 92:16–33, 2004.
ISSN 1571-0661. doi: DOI:10.1016/j.entcs.2003.12.020.
URL http://www.sciencedirect.com/science/article/

B75H1-4BY45WP-F/2/49e2cf3a8c99ed487b5ac1a0e3e395bb.
Proceedings of ATMOS Workshop 2003.

http://upload.wikimedia.org/wikipedia/commons/8/8f/Ablaufberg.png
http://upload.wikimedia.org/wikipedia/commons/8/8f/Ablaufberg.png
http://www.sciencedirect.com/science/article/B6V0F-45GMFHF-2J/2/7fbdc1de385b1809910f81e6c9e21deb
http://www.sciencedirect.com/science/article/B6V0F-45GMFHF-2J/2/7fbdc1de385b1809910f81e6c9e21deb
http://www.sciencedirect.com/science/article/B6V0F-45GMFHF-2J/2/7fbdc1de385b1809910f81e6c9e21deb
http://www.jstor.org/stable/2312585
http://www.jstor.org/stable/2312585
http://www.sciencedirect.com/science/article/B75H1-4BY45WP-F/2/49e2cf3a8c99ed487b5ac1a0e3e395bb
http://www.sciencedirect.com/science/article/B75H1-4BY45WP-F/2/49e2cf3a8c99ed487b5ac1a0e3e395bb


D E C L A R AT I O N

I hereby declare that I am the only author of this work and that
no other sources than those listed have been used.

Kaiserslautern, December 2010

Florian Dahms


	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms
	1 Introduction
	1.1 Overview
	1.2 Other train sorting problems
	1.3 Basic definitions
	1.3.1 Problem instances and solutions
	1.3.2 Sub-instances
	1.3.3 Interval graphs and overlappings
	1.3.4 Algorithms


	2 Offline Problem
	2.1 IP Formulation
	2.2 Bounds
	2.3 Easy instances
	2.3.1  Pair instances with maximal overlapping destinations
	2.3.2 Instances with large disjoint sub-instances
	2.3.3 Fixed number of destinations
	2.3.4 Fixed overlappings


	3 Online Problem
	3.1 Introduction to online computation and competitive analysis
	3.2 Lower bound for det. online algorithms
	3.3 Algorithms
	3.3.1  Split
	3.3.2  Unsplit

	3.4 Randomized online algorithms

	4  Computational Results
	4.1 Underlying Probability Space
	4.2 Results

	5 Problem Variations
	5.1 Fixed number of tracks
	5.1.1 Offline Problem
	5.1.2 Online Problem

	5.2 Using an auxiliary track
	5.3 Multiple sorting steps

	6 Conclusions
	6.1 Open questions

	Bibliography
	Declaration

