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Abstract
We consider planning of freight train classification at hump yards using integer programming.
The problem involves the formation of departing freight trains from arriving trains subject to
scheduling and capacity constraints. To increase yard capacity, we allow the temporary storage of
early freight cars on specific mixed-usage tracks. The problem has previously been modeled using
a direct integer programming model, but this approach did not yield lower bounds of sufficient
quality to prove optimality. In this paper, we formulate a new extended integer programming
model and design a column generation approach based on branch-and-price to solve problem
instances of industrial size. We evaluate the method on historical data from the Hallsberg hump
yard in Sweden, and compare the results with previous approaches. The new method managed
to find optimal solutions in all of the 192 problem instances tried. Furthermore, no instance took
more than 13 minutes to solve to optimality using fairly standard computer hardware.
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quencing and scheduling
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1 Introduction

In this paper, we solve a planning problem from the largest Swedish hump yard, Hallsberg,
to optimality using a column generation approach. In previous papers [4, 5], we have
modeled the problem as a special kind of list coloring problem on interval graphs, proved
the NP-completeness of several variants of the problem, and developed both heuristics and
mixed integer programming formulations for the problem. In this paper, we are for the first
time able to find provably optimal solutions for the problem instances within practical time
limits. We evaluate our results on historical data taken from a five month period of traffic at
Hallsberg.

There are two basic modes of operation in railway freight transportation, namely single
wagon load and full train transportation. In full train transportation, all cars of a train belong
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to the same customer and share a common destination. In single wagon load transportation,
shipments of several customers are transported together in a hub and spoke network, where
trains are typically composed of cars with different destinations. In order to route each car
to its final destination, trains are decoupled into single cars at classification yards (also:
marshalling or shunting yards). New outbound trains are then formed from cars which share
a common intermediate destination.

Classification yards constitute a bottleneck in rail freight transportation. If a car misses
its next train along the route, the incurred delay can be up to several days. In order to
make single wagon load transportation more competitive, it is highly desirable to route cars
through the network as quickly as possible while maintaining all connections.

Since resources at classification yards are usually scarce, production planning is a necessity.
Of particular interest are so called hump yards, the largest class of classification yards where
cars are pushed over a hump in order to roll onto their respective classification track by
means of gravity. The problem we study in this paper is restricted to the scheduling of
the classification bowl of the hump yard, i.e., a set of parallel classification tracks that are
used for the formation of outbound trains from single cars. In particular, we consider the
common case where at any point in time, there is a bijection between outbound trains
and classification tracks, i.e., each track may only contain cars of a single outbound train.
Therefore, we need to decide for each train on which track it will be formed.

Due to the high amount of traffic it is impossible, however, to reserve a whole track for
each outbound train from the time of arrival of its first car to the time of its departure.
Therefore, some of the tracks are used as a buffer area where cars of different trains may be
temporarily stored. We refer to these tracks as mixing tracks. At given points in time, a
pull-out operation is performed which allows to move any subset of cars from the mixing
tracks to the classification tracks, provided that the formation of each such car’s respective
outbound train has started. In all brevity, a pull-out comprises that the cars of each mixing
track are coupled, pulled back over the hump by an engine, to be immediately pushed over
the hump to once more be distributed on the classification tracks. The latter is called a
roll-in operation. A more detailed description of the operations as well as further planning
problems at Hallsberg is given in [5].

Early literature on freight classification considers sorting schemes that essentially perform
the same sorting steps for any input sequence of a given length [13, 14, 10]. More recently,
it has been studied how to utilize the “pre-sortedness” of the input in order to minimize
the number of pull-out operations [8, 12], as well as variants thereof [7]. A recent survey
by Gatto et al. [11] gives an overview of this topic. The problem we study in this paper
however does not require the cars of outbound trains to be sorted in any particular order.

The rest of the paper is structured as follows. We first define the mixing problem formally
in Section 2 and give a direct integer programming model used for comparison in Section 3.
In Section 4 an extended formulation is presented together with a new solution approach
using branch-and-price column generation, a corresponding polynomial pricing problem,
and the branching rules employed. Section 5 describes the experimental setup and results,
including a comparison with previous approaches. Finally, Section 6 concludes the paper
and outlines future research.

2 Problem Definition

We are given a set of classification tracks O, a set of periods P , a set of cars Q, and a set of
outbound trains R. Groups of cars with the same destination arriving at the same time are
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12 Optimal Freight Train Classification using Column Generation

handled as single units. For each car q ∈ Q, we are given its arrival time t(q), i.e., the time
of its first roll-in into the classification bowl, its length s(q), and its corresponding outbound
train r(q) ∈ R. Each train r ∈ R has a departure time t(r), i.e., the time when it leaves
the classification bowl. We denote by Q(r) ⊆ Q the set of cars that belong to train r. The
length s(r) of a train r is the sum of the lengths of its cars, s(r) :=

∑
q∈Q(r) s(q).

For each classification track o ∈ O we are given its length s(o). Thus, a train r can be
formed on track o if and only if s(r) ≤ s(o). Let R(o) denote the set of trains that can be
formed on track o. At any point in time, a classification track may only contain the cars of
one outbound train, and each train is formed on exactly one classification track. We say that
a train r is active during the time interval in which its corresponding classification track is
used exclusively for the formation of r.

We define the strict partial order ≺ on the set of outbound trains R such that r ≺ r′

if and only if train r ∈ R can be scheduled directly before train r′ ∈ R on the same track.
Whether r ≺ r′ holds or not depends, amongst others, on the departure times of trains r and
r′ as well as on technical setup times (e.g., brake inspection), the details of which we omit
for the sake of clarity. Note that antisymmetry is ensured as no two trains may be formed
on one track at the same time. We denote with r ‖ r′ that r and r′ cannot be formed on the
same track (i.e. they are incomparable by ≺).

In general, there are not enough classification tracks such that each train is active from
the arrival of its earliest car until its departure. Therefore, we are also given a set of mixing
tracks on which one can temporarily store cars of different outbound trains. To simplify our
discussion, we treat these tracks as one concatenated track, called the mixing track. The
mixing track has a given length smix. A car that is stored on the mixing track is said to be
mixed. Whether a car needs to be mixed or not depends solely on the departure time of the
preceding train on the same track. Once a train becomes active, mixed cars of that train
can be retrieved from the mixing track by a pull-out operation on the mixing track, which
is performed once at the beginning of each period. For each period p ∈ P , we are given its
starting time t(p). During the pull-out starting at time t(p) each mixed car of a currently
active train is moved to the allocated classification track. The remaining mixed cars return
to the mixing track and remain there at least until the next period begins.

We seek to avoid the mixing of cars for several reasons. First, for each period during
which a car is mixed, it will be subject to a roll-in operation, which takes effort and time, and
wears down switches and tracks. As an objective function, we therefore choose to minimize
the number of extra roll-in operations performed due to mixing. Second, the limited capacity
smix of the mixing track must be respected in each period. Since no car can leave the mixing
track until the next pull-out is performed, the total length of the mixed cars within a period
is at its maximum at the end of the period. For two trains r ≺ r′ and a period p, let sp(r, r′)
denote the total lengths of all cars of r′ which have to be mixed in p:

sp(r, r′) =


∑

q∈Q(r′):t(q)<min(t(r),t(p+1))
s(q), if t(p) < t(r) ,

0, otherwise.

Furthermore, let c(r, r′) denote the total number of extra roll-ins for two trains r ≺ r′:

c(r, r′) =
∑

q∈r′:t(q)<t(r)

|q| · kqr ,

where |q| is the number of actual cars represented by the car group q and kqr is the number
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of periods between the arrival of car group q and the departure of train r:

kqr = #
{
p | p ∈ P ∧ t(q) < t(p+ 1) ∧ t(p) < t(r)

}
.

There are several subtleties in how mixing is performed that are noteworthy. Consider
two consecutive trains r, r′ for which r ≺ r′. Any car of the second train r′ that arrives after
t(r), the time of departure of the first train, may enter the classification track directly, since
r′ can become active immediately after r has departed. However, any car q of r′ arriving
before the departure of r, i.e., t(q) < t(r), has to be send to the mixing track, since the
classification track o may only hold cars of one outbound train at the same time. This also
means that the partial order ≺ actually depends on the given times of periods, trains, and
cars. If r ≺ r′ and the second train r′ has a car q that must be mixed, then in order to
pull back and roll-in of q to o in time before r′ departs, there must also be a period p with
t(r) < t(p) < t(r′). Note also that a train whose earliest car arrival and departure time lie
both within the same period cannot have cars that are mixed, for otherwise such a car could
not be moved in time to the classification track.

c(ri, rj)
ri Car arrivals s t r2 r3 r4

r1 t(q1) = 0 1 5 4 1 0

r2 t(q2) = 1 1 7 1 1
t(q3) = 3

r3 t(q4) = 4 1 8 1

r4 t(q5) = 6 2 11
t(q6) = 10

(a) Problem instance data.

1

p1 p2 p3

320 5 764 9 108

r1

r2

r3

r4

q1

q2 q3

q4

q5 q6

time11

o1

o2

mix

(b) Illustration of problem instance. Downward-
pointing arrows indicate car arrivals.

Figure 1 Example instance with two classification tracks o1, o2, departing trains r1 − r4, car
arrivals q1 − q6, and three periods p1 − p3. The total number of mixed cars if two trains are allocated
on the same track are also shown. Of the two tracks, only o2 can accommodate the longest train r4;
all other trains fit on any track.

An example problem instance is illustrated in Fig. 1. Here, four trains with car arrivals
and departure times as below are to be allocated to two classification tracks o1, o2. All trains
fit on the longest track o2, but only the first three trains fit on the shorter track o1. Mixing
capacity is assumed to be infinite, and pull-outs are performed at time 4, 6 and 9. Traversing
the trains in order, all trains can precede all later trains (as defined by ≺).

2.1 Sequences and Feasible Solutions
We define feasible solutions to our problem in terms of sequences of trains, which can be
allocated to individual tracks. A sequence g is a totally ordered subset of trains. Let us
denote the fact that two trains r, r′ ∈ R appear consecutively in this order in a sequence g
by (r, r′) ∈ g. For example, given a sequence g = 〈r1, r2, r3〉, it holds that (r1, r2) ∈ g and
(r2, r3) ∈ g, but note that (r1, r3) 6∈ g. A sequence which is ordered by ≺ is feasible. Let G
denote the set of feasible sequences. For each g ∈ G and period p ∈ P , let sp(g) be the total
length of the mixed cars for g in p, i.e.,

sp(g) =
∑

(r,r′)∈g

sp(r, r′) .
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14 Optimal Freight Train Classification using Column Generation

Further, let c(g) be the sum of all extra roll-ins for g:

c(g) =
∑

(r,r′)∈g

c(r, r′) .

A schedule f : O → G is an injective mapping from tracks to feasible sequences. A
feasible sequence g can be scheduled on a track o if and only if all trains of the sequence fit
on the track, i.e., g ⊆ R(o). Let us denote by G(o) the set of all feasible sequences that can
be scheduled on track o. A feasible solution to our problem can now be defined as a schedule
f that

1. assigns each track a feasible sequence,

∀o ∈ O : f(o) ∈ G(o) ,

2. such that each train occurs exactly once in a sequence,

∀r ∈ R : ∃o ∈ O : r ∈ f(o) ∧ ∀o′ ∈ O : o 6= o′ → r 6∈ f(o′) ,

3. and such that in each period, the capacity of the mixing track is respected,

∀p ∈ P :
∑
o∈O

sp(f(o)) ≤ smix .

A feasible solution f is optimal if it minimizes the total number of roll-ins
∑

o∈O c(f(o)).
Figure 2 illustrate one suboptimal solution as well as one optimal solution to the example
problem instance from Figure 1.

1

p1 p2 p3

320 5 764 9 108 time11

o1

o2

mix

r1 r2

r3 r4

q1

q6

q2 q3

q4

(r4)(r2)
q5

(a) Feasible solution, with car q2 and q3 mixed in
two periods each, and q5 in one.

1

p1 p2 p3

320 5 764 9 108

r2q3

time11

o1

o2

mix

r1

r2

r3

r4

q1

q2 q3 q6

q4 q5
(r4)(r3)

(b) Optimal solution, with car q4 and q5 mixed in
one period each.

Figure 2 Two feasible solutions for the problem instance in Fig. 1. Cars are mixed for in total
five periods in 2a and two periods in 2b.

3 A Binary Integer Programming Formulation

In order to evaluate the main contribution of this paper, namely the column generation
approach described in Section 4, we give a brief outline of the binary integer programming
formulation for the problem which we developed in [5].

The model is based on the observation that both the number of extra roll-ins and the
amount of used mixing capacity in each period depends solely on times when trains become
active. Further, only a few points in time turn out to be relevant for a train to become
active, namely each time one of its cars arrives or is pulled-out of the mixing track. Let T (r)
denote the set of all such relevant points in time for train r. We introduce binary variables
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xrt that indicate at which time t the reservation of a classification track for outbound train
r starts, i.e., at which time r becomes active. Further, binary variables yro indicate whether
the outbound train r is allocated to track o.

minimize
∑
r∈R

∑
t∈T (r)

c(r, t) · xrt (1)

subject to
∑

o∈O(r)

yro = 1, r ∈ R (2)

∑
t∈T (r)

xrt = 1, r ∈ R (3)

∑
t∈T (r′):t<t(r)

xr′t + yro + yr′o ≤ 2, r ≺ r′, o ∈ O(r) ∩O(r′) (4)

∑
r∈R

∑
t∈T (r)

sp(r, t) · xrt ≤ smix, p ∈ P (5)

x, y ∈ {0, 1} (6)

Objective (1) gives the objective in terms of the number c(r, t) of extra roll-ins due to
mixing, which results from using start time t for train r. Equalities (2) ensures that each
train r ∈ R is allocated to a track on which it fits. Equalities (3) ensures that each train
r ∈ R becomes active at a relevant time point t ∈ T (r). Inequalities (4) states that for each
pair of trains r ≺ r′ that can be scheduled consecutively on the same track, either r and r′

are scheduled on different tracks, or r′ becomes active only after r has departed. Finally,
Inequalities (5) ensures that the mixing capacity is respected in each period, where sp(r, t)
denotes the length of all cars of r that are mixed in period p if r becomes active at time t.

Scheduling problems in general often yield weak LP relaxations, and not surprisingly,
this is true also for the compact problem formulation in the previous section, which have
scheduling properties such as those encoded in Intequalities (4). This is confirmed by the
results in [5] and [4].

4 Extended Formulation Solution

In this section, we introduce an extended formulation, where the variables represent pairings
of entire sequences and tracks. We will see that this formulation can be solved efficiently by
branch-and-price and leads to a strong LP relaxation for our problem instances (see Section
5.1).

For each track o and every possible sequence g ∈ G(o) we use a variable xgo to encode
whether we use g on o or not. As we saw in Section 2, it is sufficient to know the sequence
for each track to calculate the mixing track usage and the number of extra roll ins of a
schedule. Furthermore, each sequence-track pair included in the final solution will add to
these quantities independently of all other pairs, which allows us to use a linear objective
function and linear constraints only. To aid in branching, we also use the variables yro from
the previous section, encoding that train r is assigned to track o. The full integer program
for our extended formulation (EF) looks as follows:

ATMOS’12



16 Optimal Freight Train Classification using Column Generation

min
∑
o∈O

g∈G(o)

c(g) · xgo (7)

s.t.
∑
o∈O

yro ≥ 1 r ∈ R (8)∑
g∈G(o)

r∈g

xgo ≥ yro r ∈ R, o ∈ O (9)

∑
g∈G(o)

xgo ≤ 1 o ∈ O (10)

∑
o∈O

g∈G(o)

sp(g) · xgo ≤ smix p ∈ P (11)

x, y ∈ {0, 1} (12)

Objective (7) counts the total number of extra roll-ins as the sum of the roll-ins for the
sequences selected for each track. Inequalities (8) and (9) ensure that every train appears in
one sequence. We do not have to ensure equality as using a single train several times can
never improve the objective. If a single train occurs several times in an optimal solution,
then it can be removed from all but one sequence. Inequalities (10) state that at most one
sequence per track can be used, and inequalities (11) ensure that we do not use more than the
available mixing capacity in any period. Inequalities (8–11) are equivalent to the conditions
for a feasible schedule in Section 2.

In the model above, there is one x variable for each combination of sequence g ∈ G(o)
and track o ∈ O. As the size of G(o) is of order O(|R|!) only a subset of the x variables are
initially included, and column generation is used to generate new variables as needed. For a
detailed introduction to column generation see [9].

To use column generation, we first look at the dual of the LP relaxation of (EF):

max
∑
r∈R

αr +
∑
o∈O

γo + smix
∑
p∈P

δp (13)

s.t. αr ≤ βro r ∈ R, o ∈ O (14)∑
r∈g

βro + γo +
∑
p∈P

sp(g) · δp ≤ c(g) o ∈ O, g ∈ G(o) (15)

α, β ≥ 0 γ, δ ≤ 0 (16)

The dual variables are chosen as follows: the α variables correspond to primal inequalities
(8), β to (9), γ to (10) and δ to (11). For every primal variable x we get an inequality of the
form (15) and for every y an inequality of the form (14).

As stated above we start off with a reduced set of x variables. This reduced set contains
sequences from a heuristically generated solution. Following the literature we will refer to
this smaller variant of (EF) as the restricted master problem (RMP). We can now solve the
LP relaxation of (RMP) to optimality with regard to the chosen subset of variables using
any LP solver. Note that this solution may or may not be optimal for the relaxed (EF).
From duality theory we know that the optimal solution for the relaxed (EF) will have a
corresponding dual solution that satisfy all inequalities in (15). Further, the inequalities in
(15) corresponding to the x variables in the (RMP) are guaranteed to be satisfied by our
solution.

If our solution to the relaxed (RMP) satisfies all inequalities (15), it is also optimal for the
relaxed (EF). If not, we need to add variables corresponding to violated inequalities to the
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(RMP) and start over again until no inequalities are violated anymore. The new sub-problem
is now to identify violated constraints (15) without checking every single one (which would
be inefficient due to their number). This step, called pricing, will be explained in Section 4.1.

When we have reached an optimal LP solution for (EF), the solution might not be integral.
Normal branch-and-bound on (RMP) does not guarantee optimality of the resulting integral
solution, as the LP relaxation of (RMP) is not necessarily a lower bound given the branching
decisions made to reach integrality. Therefore we may have to price in new variables in each
node of the search tree. Furthermore, we must also take care not to include variables which,
given the current branching decisions, represent infeasible train sequences. In Section 4.2 we
will show how we implement a branching rule and how the branching decisions are taken
into account in the pricing step. Algorithms of this type are referred to as branch-and-price
algorithms [3].

4.1 Pricing
We will now discuss how we can efficiently determine variables that can improve (RMP) by
finding violated inequalities from (15). First, as the set O is not too large, we can easily look
at the inequalities for each track separately. Thus for each track o ∈ O we need to find a
sequence g ∈ G(o) for which∑

r∈g

βr,o +
∑
p∈P

sp(g) · δp − c(g) ≤ −γo

is violated. There might be many such inequalities, and we want to search for the inequality
that is violated the most, i.e., we want to maximize the left hand side:

max
g∈G(o)

∑
r∈g

βro +
∑
p∈P

sp(g) · δp − c(g) .

To do so we use the fact that sp(g) and c(g) are calculated as sums over pairs of trains
appearing consecutively in the sequence, i.e. the quantities only depend on the immediate
predecessor for each train (see Section 2).

u r1 r2 r3 r4 v

Figure 3 Longest path graph for the root pricing problem for track o2 from the example in
Figure 1.

First, a directed graph G = (V,E) is constructed with the node set V = R(o) ∪ {u, v},
i.e., one node for each train fitting on o plus two additional nodes. The edge set E includes
an edge (u, r) and (r, v) for every train r ∈ R(o), and an edge (r1, r2) if r1 ≺ r2. Note that
any path from u to v in G corresponds to a feasible sequence g ∈ G(o). Figure 3 shows what
this graph looks like for the example presented in Figure 1, if we search for a new sequence
for track o2.

Next, we add edge weights to G. We choose the following weights:
w(u,r) = βr,o

w(r1,r2) = βr2o +
∑

p∈P sp(r2, r1) · δp − c(r2, r1)
w(r,v) = 0

ATMOS’12



18 Optimal Freight Train Classification using Column Generation

For every sequence g ∈ G(o) there is one equivalent path in G which has a total weight
equal to∑

r∈g

βro +
∑
p∈P

sp(g) · δp − c(g) .

As this is the quantity we want to maximize, we can search for a longest path in G from
u to v. Due to the partial ordering of the trains, G is cycle-free, and calculating a longest
path can be done in O(|V |+ |E|) time (see[6]). In our case, this would be O(|R|2), as the
graph could be close to complete (i.e., complete except for edge (u, v), if ≺ is a total order).

4.2 Branching

When the LP relaxation of (EF) is solved in one of the branch-and-bound trees nodes and
the solution turns out to be fractional, the solution space of the relaxed problem needs to be
further restricted. This is known as branching. However, branching on x is problematic, as
in the xgo = 0 branch just one sequence g on track o will be excluded. The pricing problem
would therefore have to exclude individual paths, which in general is much more difficult
than only computing the longest path. This is a common issue in column generation, see for
example [3].

Fortunately, we can circumvent this problem by branching on allocation of trains r
to tracks o instead, corresponding to the original yro variables in the direct model. In
every fractional node, we will choose a fractional variable yro (such a variable must exist as
otherwise the solution would not be fractional). The problem is then divided into two cases,
one where yro equals 0 and one where it equals 1. Next we need to consider how to make
sure branching decisions are respected in subsequent pricing steps. This can be accomplished
by modifying the graph used in the pricing (see Section 4.1). We look at the two possible
cases:

Case yro = 0: Remove node r from node set V and all edges connected to it. This way the
generation of a sequence which contains train r is prohibited.

Case yro = 1: For all nodes r′ and r′′ where t(r′) ≺ t(r) ≺ t(r′′), remove the edges (r′, r′′),
together with (u, r′′) and (r′, v), from the edge set E. Also remove all nodes r′ for which
it holds that r′ ‖ r along with all their edges. Now all paths from a node before r to one
after r will include r. Therefore no path from u to v can skip node r, forcing r to be
contained in every generated sequence.

To illustrate this, consider the example graph in Figure 3. Figure 4 shows how the
transformed longest path graphs would look like in both branches for variable yr2o2 .

u

yr2o2 = 0

r1 r2 r3 r4 v u

yr2o2 = 1

r1 r2 r3 r4 v

Figure 4 Longest path graphs for the pricing problem for track o2 in the example from Figure 1
after branching on yr2o2 . Dotted nodes and edges are removed from the pricing problem.
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5 Experiments

We evaluate the new approach on a historic data set, provided to us by the Swedish Transport
Administration (Trafikverket). The data set is for arriving and departing trains and cars
at the Hallsberg Rangerbangård hump yard in central Sweden, and covers a period of five
months between December 2010 and May 2011. Hallsberg has 8 tracks of length 595 to 693
meters on the arrival yard, two parallel humps, of which only one is in use, 32 available
classification tracks of length between 374 and 760 meters, and 12 tracks with length 562 to
886 meters on the departure yard. The layout of Hallsberg is shown in Figure 5.

Figure 5 Layout of the Hallsberg classification yard in Sweden. The arrival yard is on the left,
followed by the hump, the switching system, classification tracks, and finally the departure yard on
the right. The image is taken from [2], and is scaled to emphasize details.

There are also several other tracks on the yard, for example tracks going to light and
heavy repair facilities. These additional tracks are not considered since they are not normally
used for shunting. Furthermore, arrival and departure tracks as well as hump scheduling is
done in a preprocessing stage to obtain a suitable data set (see [5] for more details). Duration
estimates were taken from [1].

The resulting data set consists of arrival times for 3653 outbound trains and 18366 car
groups. Since operational planning is in practice done for a few days at a time, we split the
resulting data set into separate planning problems, which each contain all car groups and the
corresponding trains which are handled on the yard during the chosen interval. We chose
to evaluate plans of length between two and five days, and assume that the yard is empty
at the beginning of each planning interval. In a deployed implementation, cars which were
already on the yard at the beginning of the planning interval would also have to be handled,
but this is not considered in this paper. In total, 192 problem instances were generated for
evaluation.

To evaluate our approach, we optimized the resulting problems using the improved
heuristic from [5] (Heuristic++), the direct model from Section 3 (D-IP) and the new column
generation approach from Section 4 (CG-IP). When found, heuristic solutions were used as
starting points for both D-IP and CG-IP. CPLEX 12.4.0.0 in deterministic parallel mode
with up to 8 threads was used to solve D-IP. CG-IP uses SCIP 2.1.0 as a branch-and-price
framework with the same CPLEX version as LP solver. Experiments were performed on
Linux workstations running openSUSE 12.1 with two Intel Core i7-2600 quad-core CPUs
running at 3.4 GHz and equipped with 16 GB of RAM. All times are reported as wall-clock
seconds and includes problem setup and post processing. A time limit of 20 minutes was set
for each problem instance, after which the best integer solution found was returned.
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Table 1 Experimental results for different planning horizons and solution methods. For each
planning horizon, the number of instances in the sample data and the average instance problem
size are included. For the different solution methods the table shows the average number of extra
car-roll-ins due to mixing, the average execution time and the number of instances for which optimal,
feasible and no feasible solutions were found. The average optimality gap is also reported for
instances where feasible solutions with a non-zero lower bound were found. Finally, the number
of times CG-IP generated a schedule with less extra roll-ins is reported along with the average
improvement. Only the schedules that improved the number of extra roll-ins are included in this
average. Only feasible instances are included in the average extra roll-ins and improvement values.

Planning horizon (days)
2 3 4 5

Number of instances 75 50 37 30
Avg. number of trains 48.7 73.0 97.7 121.7
Avg. number of groups 244.9 367.3 492.0 612.2

Heuristic++ Avg. extra roll-ins 8.3 16.1 26.0 31.6
Avg. time (s) 0.0 0.1 0.1 0.2

Inst. classes Feasible solution 73 47 34 27
No feasible solution found 2 3 3 3

D-IP Avg. extra roll-ins 10.1 18.8 29.8 25.2
Avg. time (s) 360.6 530.9 684.1 722.4

Inst. classes

Optimality proven 50 27 14 12
Feasible solution, LB>0 (avg. gap) 3(6.0) 2(16.2) 3(18.9) 1(7.4)
Feasible solution, LB=0 22 21 20 14
No feasible solution found 0 0 0 3

CG-IP Avg. extra roll-ins 10.1 18.2 27.6 39.0
Avg. time (s) 2.0 17.5 76.4 168.2

Inst. classes

Optimality proven 75 50 37 30
Feasible solution, LB>0 (avg. gap) 0(0.0) 0(0.0) 0(0.0) 0(0.0)
Feasible solution, LB=0 0 0 0 0
No feasible solution found 0 0 0 0

Improvement Heur++ No. (Avg. improvement) 19(7.7) 16(15.0) 15(11.7) 13(14.4)
D-IP No. (Avg. improvement) 1(1.0) 8(3.6) 9(9.1) 7(3.4)

5.1 Results

The experimental results are shown in Table 1. The relative MIP gap reported is calculated
as |p− d|/|p|, where p is the primal bound (the objective of the best found integral solution)
and d is the dual bound. Note also that when a method fails to find a feasible solution for
an instance, we exclude that instance from the extra roll-in average. As these instances often
have a lot of traffic this reduces the average number of extra roll-ins for this method. This is
why the heuristic has a lower extra roll-in average than the optimizing methods, and likewise
why D-IP has a lower extra roll-in average than CG-IP for the five day planning horizon.

As we can see, CG-IP manages to prove optimality for all problem instances, compared
to only 54 % of the instances for D-IP. This indicates a quite strong LP relaxation for CG-IP.
In contrast, for D-IP, 90 % of the feasible instances not proven optimal terminates with a
trivial lower bound of zero. For CG-IP, no instance took longer than 13 minutes to solve to
optimality, while D-IP reaches the time limit for approximately 45 % of the instances.
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Further, CG-IP always improves the shunting schedules with respect to the number of
extra roll-ins compared to Heuristic++ and D-IP, and the percentage number of improvements
increases as the planning horizon is extended. The reason the comparison between CG-IP
and D-IP gives lower values than expected for the five day planning horizon is that D-IP
fails to return a solution for 3 instances, and these 3 instances are subsequently omitted from
the calculations.

6 Conclusions

We presented a compact IP model alongside an extended IP formulation to solve the train
classification problem arising at (among other) the Hallsberg hump yard. For the extended
formulation we provided all steps necessary to make it solvable in an efficient manner. The
pricing problem was shown to be a longest path problem on a directed acyclic graph. We
provided a branching rule that could easily be incorporated into the pricing problem by
means of modifying this graph.

In the experiments performed on the data from Hallsberg the extended formulation
turns out to provide a strong dual bound. Using the new approach we were able to find
provably optimal solutions to all problem instances in a reasonable amount of time. These
solutions often turn out to be a lot better than the solutions generated by the improvement
heuristic from our previous paper [5, 4]. Therefore the extended IP model seems to be a good
starting point for further research. In particular, the new results open up for a real-world
implementation of the developed models.

6.1 Future Work

Though the results are promising, there are still open questions to be considered in future
research.

The NP-completeness of the problem has been shown by reduction from µ-coloring [5].
The proof inherently needs the existence of differently sized classification tracks. It is still an
open question whether the problem stays NP-complete if all tracks are of equal length.

As can be seen in Section 5.1, all our problem instances could be solved to optimality
within a reasonable amount of time. Still, finding optimal solutions takes too much time
for larger instances. We believe that this is mainly due to symmetry arising in the problem
formulation, since train sequences on equivalent tracks can be interchanged. A possible way
to reduce symmetry could be to aggregate the extended formulation variables and use a more
sophisticated branching rule.

In real-world applications, the exact car lists and times of all incoming and outgoing
trains are normally not known far in advance. Therefore the planning needs to be flexible,
and the shunting schedule should be updated on a regular basis. This suggests possible
further research directions:

Changing the shunting schedule might be complicated as the formation of trains may
already have begun. Therefore it would be preferable if the original schedule was
constructed such that it could easily be recovered. Research from the field of recoverable
robustness might apply here.
Creating the shunting schedule while not possessing all information about the future adds
an online component to the problem. It would be interesting to see if the problem can be
handled as an online problem and if competitive analysis could lead to applicable results.
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It also appears natural that less shunting would reduce the total load on the yard, implying
a possibility to classify more freight with the same resources. To be consistent with current
practices in Sweden, we however had to assume a fixed timetable and a fixed allocation of
cars to trains. Planning timetables and freight car allocations with optimal yard operation
in mind may yield such positive effects, and should therefore be investigated further.
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