
D E C O M P O S I T I O N O F I N T E G E R P R O G R A M S W I T H M AT C H A B I L I T Y
S T R U C T U R E

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen
University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften

genehmigte Dissertation

vorgelegt von

Diplom-Mathematiker
Florian Herbert Werner Dahms

aus Berlin

Berichter: Universitätsprofessor Dr. ir. Arie M.C.A. Koster
Universitätsprofessor Dr. rer. nat. Sven O. Krumke
Universitätsprofessor Dr. rer. nat. Marco Lübbecke

Tag der mündlichen Prüfung: 25.11.2016

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

Florian H.W. Dahms: Decomposition of Integer Programs with Matchability Structure,
© 2015

P R E FA C E

This thesis deals with combinatorial optimization problems, which exhibit some
kind of (possibly hidden) matching structure. Examples for problems where such
structures appear are educational timetabling, multiple knapsack, list coloring, ma-
chine scheduling, and a particular railway shunting problem. Each of these will be
examined in more detail. The algorithms developed for these applications all re-
quire a considerable amount of mathematical theory to work and are therefore
exemplary cases where theoretical research translates directly into applicable re-
sults.

The first part of the thesis will introduce the necessary theoretical groundwork,
ranging from theory of graphs and polyhedra to the decomposition of (integer) lin-
ear programming problems. Many well known graph theoretical results are com-
bined in novel ways to yield the concepts needed for developing algorithms that
can generically exploit matching structures. The established theory gives a sound
foundation for algorithms that can be used to solve a wide range of practical prob-
lems. Some of these are covered later but the results are not confined to these.
In fact it is expected that many problems exhibit the required structures and the
reader may find in this thesis the necessary groundwork to base her own methods
upon. To be useful in this regard, much effort was expended in order to make the
theorems as widely applicable as possible.

Overall there are two major areas where the thesis provides novel research. The
first of these areas is related to the theory of partial transversals and their poly-
hedral application in bipartite matchings and subgraphs. It is shown how a sep-
aration algorithm for the partial transversal polytope is related to a Benders’ de-
composition algorithm for the same problem. From this relation some algorithmic
improvements are derived. Furthermore these insights then lead to a combinatorial
Benders’ algorithms that is capable of dealing with hypergraphs instead of regular
graphs while being a generalization of the algorithm developed for regular graphs
beforehand.

The second larger research topic deals with column generation algorithms where
the problem structure exhibits certain symmetries. In very symmetric problems,
e. g., in the binpacking problem, one can vastly reduce the number of generated
variables by aggregating the variable space. If the problems symmetry is slightly
distorted, a novel approach is presented how such an aggregation can still suc-
ceed. This approach builds upon the already covered theory around the partial
transversal polytope and uses it to ensure that disaggregation will remain possi-
ble. Some very beautiful theory leads to the insight that such a procedure can be
implemented without a theoretical drawback in the problem complexity.

Alongside these two larger research topics, the thesis also contains many small
insights, which are presented at the appropriate places. For example it is shown
that for popular matchings it is not possible to separate an equivalent to the partial
transversal polytope in a simple way (as simple as it was for the partial transver-
sal polytope). It is also shown how the Benders’ optimality cuts for a weighted
matching can be efficiently approximated with a polynomial number of cuts in

iii

certain special cases. Furthermore several NP-completeness proofs are presented
for various problems.

The second part of this thesis will contain the already mentioned example prob-
lems, introduce them in detail, and give computational studies for some of the
algorithms developed in the first part. For some of the problems, modifications of
the algorithms will be introduced to make them more suited for the specific appli-
cation. Hopefully the reader will find here inspiration on how the results of this
thesis can be applied to her problems.

The thesis presents a large amount of required theory, much of it backed up by
original mathematical proofs, which shall grant the reader a deeper understanding
of the underlying concepts. Throughout the thesis many theorems are proven. If
not stated otherwise the proof will be the original work of the thesis’ author (in
total there are such original proofs for 15 theorems, 4 lemmas and 5 corollaries).
If the theorem was not proven by the author and the original publication of the
theorem was known to the author of this thesis, the corresponding publication is
cited instead of the proof (potentially alongside other references to proofs which
are better understandable according to the opinion of this thesis’ author). If the
original publication was not known (e. g., because the theorem has diffused into
being common mathematical knowledge without a definite source) a good text-
book reference was cited.

iv

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following publications:

• “Optimal Freight Train Classification using Column Generation” by Markus
Bohlin, Florian Dahms, Holger Flier, and Sara Gestrelius [34]

• “Optimized shunting with mixed-usage tracks” by Markus Bohlin, Sara Gestre-
lius, Florian Dahms, Matúš Mihalák, and Holger Flier [35]

• “A Two-Stage Decomposition of high School Timetabling applied to cases in
Denmark” by Matias Sørensen and Florian Dahms [149]

• “Optimization Methods for Multistage Freight Train Formation” by Markus
Bohlin, Sara Gestrelius, Florian Dahms, Matúš Mihalák, and Holger Flier [36]

v

It turns out that an eerie type of chaos can lurk
just behind a facade of order – and yet, deep inside

the chaos lurks an even eerier type of order.

— Douglas R. Hofstadter

A C K N O W L E D G M E N T S

During the work on this thesis I was supported by many friends and colleagues to
whom I would like to express my gratitude.

In particular I would like to express thanks to my PhD advisor Marco Lübbecke
for giving direction in times where my research lost its track and teaching me
many of the intricacies of implementing proper combinatorial algorithms.

Thank goes to Martin Bergner and his impressive in depth knowledge of GCG
and SCIP which made it possible that we were able put the theory of the heteroge-
neous aggregation algorithm (chapter 5) into a working prototype.

I would like to thank Marco Lübbecke as well as Arie Koster and Sven Krumke
for taking the time of thoroughly reviewing this thesis.

I am very thankful to Michael Bastubbe, Christina Büsing, Sarah Kirchner, Chris-
tian Puchert, Annika Thome, Felix Willamowski and Jonas Witt for carefully read-
ing the preliminary text of this thesis and providing many helpful corrections and
suggestions.

Thanks are also due to Judith Behrooz who helped me in the grueling fight
against the wheels of bureaucracy.

Furthermore I would like to thank my parents, who made sure that I never lost
my fascination with the sciences and always stayed curious.

Finally I would like to thank my fiancée Anne Junk, whom I gravely neglected
way to much while working on the research for this thesis, for her ongoing love
and support.

vii

C O N T E N T S

i theory 1

1 introduction 3

1.1 Basic Notation 3

1.2 Computational complexity 5

1.3 Graphs 6

1.4 Polyhedral theory 10

1.5 Matroids 12

1.6 Linear programming 13

1.7 Solving linear programs 15

1.8 (Mixed) Integer programming 16

1.9 Total unimodularity and total dual integrality 19

2 matching theory 21

2.1 Basic definitions 21

2.2 Algorithms for matchings 22

2.3 The matching polytope 24

2.4 The partial transversal polytope 25

2.5 The perfectly matchable subgraph polytope 31

2.6 Bipartite hypergraph matchings 33

2.7 Popular matchings 36

3 decomposition methods 41

3.1 Further reading 41

3.2 Dantzig-Wolfe decomposition 42

3.3 Dantzig-Wolfe decomposition for MILP 46

3.4 Benders’ decomposition 48

3.5 Benders’ decomposition for MILP 51

4 matching as subproblem for benders’ decomposition 55

4.1 Bipartite matching as subproblem 55

4.2 Bipartite hypergraph matching as subproblem 65

5 heterogeneous aggregation for dantzig-wolfe decomposi-
tion 69

5.1 Aggregation of identical subproblems 69

5.2 Branching with identical subproblems 75

5.3 Aggregation with heterogeneous subproblems 79

5.4 Branching with heterogeneous subproblems 82

5.5 Pricing with heterogeneously aggregated subproblems 83

ii application 89

6 timetabling problems 91

6.1 Introduction 91

6.2 Literature review 92

6.3 Problem definition 94

6.4 Optimization algorithms 100

6.5 Experiments 112

6.6 Conclusions 122

ix

x contents

7 the multi-stage train formation problem 125

7.1 Introduction 125

7.2 Related work 127

7.3 Definitons 128

7.4 Feasible schedules 129

7.5 Column generation formulation 131

7.6 Compact formulation 135

7.7 Aggregated column generation formulation 138

7.8 Conclusion 139

8 various applications of heterogeneous aggregation 141

8.1 Problem defintions 141

8.2 Experiments – MKP specific 149

8.3 Experiments – generic GCG implementation 150

8.4 Conclusion 151

9 summary and outlook 153

iii appendix 155

a experimental results on the timetabling instances 157

a.1 Udine instances 157

b experimental results on aggregation instances 161

b.1 Dedicated multiple knapsack solver 161

b.2 Generic implementation 163

bibliography 167

L I S T O F F I G U R E S

Figure 1 NG and N−1
G : Ū = {b, c}, NG(Ū) = {1, 2, 3} = V̄, N−1

G (V̄) =

{a, b, c} 8

Figure 2 The optimal solution of an ILPs LP relaxation, compared
with the ILP optimum 17

Figure 3 An example for an augmenting path iteration 23

Figure 4 An example of a bipartite graph corresponding to the family
of sets A = {A1 = {x, y}, A2 = {x}, A3 = {y, z}} 25

Figure 5 An example of a graph without popular matching 37

Figure 6 An example graph where knapsack constraints are insuffi-
cient to describe the popular partial transversal polytope 39

Figure 7 Helper graphs for two subsets of the U vertices 40

Figure 8 The bipartite matching graph G = (U ∪V, E) from Example
4.1 with its edge weights 57

Figure 9 An example for the RISS algorithm 61

Figure 10 A graph where RISS does not produce sufficient optimality
cuts 65

Figure 11 An example for the RISS algorithm on a hypergraph in-
stance 67

Figure 12 An instance where RISS fails to find an existing better divi-
sion of vertices 68

Figure 13 A bad instance for the approximation of the Benders’ opti-
mality cuts 106

Figure 14 Runtime profile on “ITC” instances 116

Figure 15 Runtime profiles on “Erlangen” instances 117

Figure 16 Remaining optimality gap on artificial hypergraph timetabling
instances with 80 and 100 lectures 120

Figure 17 Remaining optimality gap on artificial hypergraph timetabling
instances with 200 and 500 lectures 121

Figure 18 Typical layout of a hump yard, and activities performed on
each car passing through the yard (the pictures were origi-
nally published by Bohlin et al. (2015) [36]) 126

Figure 19 An example for the longest path subproblem of the MSTF
CG model 134

Figure 20 Branching decisions on train b2 based upon the example
from Figure 19 135

Figure 21 Branching on the train pair (b1, b3) for the heterogeneously
aggregated column generation formulation based upon the
example from Figure 19 139

xi

xii List of Tables

Figure 22 Solver runtimes for dedicated multiple knapsack solvers on
all instances 151

L I S T O F TA B L E S

Table 1 Summary of algorithm objectives on the Lectio instances 113

Table 2 Median running times in seconds on the Udine instances 115

Table 3 “Best algorithm” statistics on the Udine instances 115

Table 4 Results on the RWTH instances 119

Table 5 Median remaining optimality gap in percent on the artificial
hypergraph timetabling instances 119

Table 6 “Best algorithm” statistics on the artificial hypergraph timetabling
instances 119

Table 8 Statistics for dedicated multiple knapsack solvers, aggre-
gated by knapsack similarities 150

Table 9 Statistics for dedicated multiple knapsack solvers, aggre-
gated by correlation between item size and value 150

Table 10 Overview results for “multiple knapsack” instances 151

Table 11 Overview results for “list coloring” instances 152

Table 12 Overview results for “machine scheduling” instances 152

Table 13 Solver statistics on the Udine “ITC” instances with hard con-
strained room matching 158

Table 14 Solver statistics on the Udine “ITC” instances with soft con-
strained room matching 159

Table 15 Solver statistics on the Udine “Erlangen” instances with hard
constrained room matching 159

Table 16 Solver statistics on the Udine “Erlangen” instances with soft
constrained room matching 160

Table 17 Results of the dedicated multiple knapsack solvers (without
and with heterogeneous aggregation) 163

Table 18 Solver quality statistics on various instances, applicable for
heterogeneous aggregation 166

Part I

T H E O RY

1
I N T R O D U C T I O N

In order to settle notation, this chapter will briefly cover some basic mathematical
concepts necessary for later parts. Nevertheless the reader will be required to al-
ready posses a sound mathematical education. This chapter is not supposed to be
a thorough introduction into the respective fields, but references to literature with
more exhaustive explanations are provided.

basic notation

Logic

Common logical notation – and (∧), or (∨), implication (⇒), equivalence (⇔), and
negation (¬) – are used in their regular sense. In sentences the equivalence is
(compliant with common practice) often abbreviated as iff (for “if and only if”).

In many definitions as well as mathematical models, the standard quantifiers
“for all” (∀) and “exists” (∃) are used in a canonical way, i. e., ∀x ∈ X, Φ(x) yields
true iff the logical function Φ returns true for each x ∈ X and ∃x ∈ X, Φ(x) yields
true iff Φ yields true for at least one element x ∈ X. When defining mathemati-
cal programming models, large parts of the literature set the quantifiers after the
statement they apply to, e. g.,

xi ≥ 0 ∀i ∈ I

This convention will also be followed in this thesis when defining mathematical
programming models over multiple lines.

Sets

The set of real numbers is given by R, the set of integers by Z and the set of
rational numbers by Q. The sets R+ and Z+ denote the non negative real and
integer numbers respectively. Equivalently the non positives are denoted by R−
and Z−.

More complex sets will be defined in the common set-builder notation where
{x : Φ(x)} is the set of all elements for which the logical function Φ evaluates
as true. A set S is called convex, if for x, y ∈ S and for 0 ≤ λ ≤ 1 the statement
λx + (1− λ)y ∈ S is true.

When dealing with subsets of sets the general convention will be to use the same
letter for both sets but to denote the subset with a bar, i. e., for S a subset might be
called S̄ ⊆ S. Note that in cases where multiple subsets are needed different letters
or other distinguishing features will be used.

3

4 introduction

Functions

In optimization it is often the goal to find a maximal (or minimal element of a
given set). For some set S ⊂ R let max S denote an element in S of maximal
value (and min S of minimal value). Note that for arbitrary sets such an element
does not need to exist. Within this thesis the corresponding sets will be closed and
either have a maximum (or minimum), or they will be empty or unbounded (in the
corresponding direction). If the set S is defined over an arbitrary ground set X with
a function f : X → R such that S = { f (x) : x ∈ X}, then an element x leading to a
maximum value in S can be accessed using the operator arg maxx∈X f (x). Similarly
a minimizing argument is given by arg minx∈X f (x).

The notation (x)+ will be used to refer to the positive part of x, i. e., (x)+ :=
max{0, x}. Respectively (x)− := min{0, x} refers to the negative part of x.

Vectors and Matrices

For a vector a ∈ Xn, with X being one of the vector spaces Z, R or Q, let ai with
1 ≤ i ≤ n denote the i-th entry of a. Let dim(Xn) = n be the dimension of the
underlying vector space. For two vectors a, b ∈ Xn the inequality a ≤ b is fulfilled
iff ∀i ∈ [n], ai ≤ bi. If not stated otherwise, vectors are assumed to be column
vectors. Also sometimes vector dimensions will not be explicitly stated if they are
clear from the context. When constructing a new vector c from several smaller
vectors a, b the notation c = (aᵀ, bᵀ)ᵀ becomes cluttered with transposition signs,
which will therefore be left out to improve readability: c = (a, b).

There are several commonly used vectors and matrices: the vector with all zero
entries is denoted by 0, the vector of all ones as 1. The identity matrix (i. e., the
matrix consisting of ones on the diagonal and zeros otherwise) is denoted as I.
For any vector a ∈ Xn let diag(a) ∈ Xn×n be defined as the matrix with a on the
diagonal and zero entries everywhere else.

Often it is useful to index a vector by the elements of a set. Given a set S and a
vector x ∈ X|S| then it is assumed that each dimension of x is associated with one
of the elements in S and the corresponding entry can be accessed as xs for some
s ∈ S. Given some subset S̄ ⊆ S it is another common and useful notation to define
x(S̄) = ∑s∈S̄ xs.

For some collection of sets S ⊆ 2S, it is often interesting to look at its incidence
vectors. For some element S̄ ∈ S the incidence vector xS̄ is defined as the vector
in R|S|, such that its entries are 1 if they correspond to an element in S̄ and 0
otherwise, i. e.,

xS̄
s =

1 if s ∈ S̄

0 otherwise.

Now the set of all incidence vectors of S is defined as

χS = {x : (x ∈ R|S|) ∧ (∃S̄ ∈ S , x = xS̄)}.

For two sets of vectors A, B ∈ Xn, their Minkowski sum is defined as the set

A + B = {a + b : (a ∈ A) ∧ (b ∈ B)}.

1.2 computational complexity 5

computational complexity

The task of computational complexity theory is to determine and measure how
difficult a certain problem class is and to specify the efficiency of a specific algo-
rithm for it. This thesis will be mainly concerned with the concept of worst case
complexity (which will be meant when talking about complexity if not stated oth-
erwise). For a more thorough introduction into this field, the reader is referred to
Garey and Johnson (1979) [77].

Assume we are given a computational problem class where I is the set of all its
problem instances. Each instance i ∈ I is encoded using some kind of alphabet.
Now for each instance we can assign it a number n(i) indicating the size of the
instance in this encoding. The exact extent of the alphabet does not matter as scalar
factors will not be of interest later on. In general, a computational problem consists
of classifying instances as “yes” or “no” (e. g., determining whether a matrix is
invertible or not). Therefore an optimization problem needs to be rephrased in
the form “Is this instance solvable with an objective value of at most/at least x?”.
Having an algorithm to answer this question could then be used to quickly find
the optimal value x via bisection, under the assumption that the possible values
for x are integral or rational.

If we now look at an algorithm to solve instances from I, we want to know how
its run time relates to the size of the input instance. We assume the algorithm runs
on some form of computer that is equipped with infinite memory (to ensure that
instance size won’t be an issue). The definition of a computer is based upon the
concept of a Turing machine, which won’t be explained here in detail (see, e. g.,
Garey and Johnson (1979) [77] for further information on this topic). In worst case
analysis, we want to find an upper bound (ideally the smallest) for this run time.
For example, say that our algorithm will not use more than f (n) units of time for
an input of size n. As already mentioned we do not care about scalar factors, as this
would mean to get into too many details of the algorithm’s implementation and
the underlying machine model. Instead we want to get an idea in which “efficiency
ballpark” the algorithm is playing. Therefore the common big-O notation will be
used. A function f is said to be of asymptotic growth lesser or equal to another
function g (f (n) ∈ O(g(n)) or g(n) ∈ O(f (n))) if for some sufficiently large c
we have | f (n)| ≤ c · |g(n)| for every value n of sufficient size (we usually do
not care about very small instance sizes, like n = 0). The runtime complexity of
an algorithm is described by a function f such that the algorithm runtime is in
O(f (n)) where n is the instance size.

For a certain problem class one usually wants to find an algorithm having the
lowest possible runtime complexity for this problem class. While finding the run-
time complexity for some algorithm is usually quite simple, it is much more in-
volved to prove that no algorithm of lower complexity than a certain bound exists.
Generally a problem for which there is an algorithm solving it in polynomial time
(i. e., in O(nk) for some constant k) is considered tractable. These polynomially
solvable problems are denoted by the problem class P.

Another relevant class of problems is NP. A problem is in NP, if for all its “yes”-
instances one could generate a certificate that can be used to prove that it is in
fact a “yes”-instance. Furthermore it has to be possible to perform this proof in
polynomial time (i. e., O(nk)). Problems in P are obviously also in NP, as here the
problem instance already is such a certificate (given that it is a “yes”-instance). On

6 introduction

the other hand it is currently unknown whether P ⊂ NP or P = NP. It is often
assumed that P ⊂ NP, a belief also held by the author of this thesis. In fact the
reader might not find much value in large parts of this thesis should it turn out
that P = NP.

In the case that P ⊂ NP, there exist problems where a solution can easily be
verified but which cannot be solved in polynomial time. Candidates for these prob-
lems are grouped in the class of NP-complete problems. This complexity class is
defined using the concept of reducibility. One problem can be reduced to another
one if there is a polynomial algorithm to transform an input of the first to an
input of the second one such that a “yes”-instance for the first problem will be
translated to a “yes”-instance for the second problem and a “no”-instance will be
translated equivalently to another “no”-instance. A problem class is NP-complete
if any other problem in NP can be reduced to it. For the Satisfiability problem,
Cook’s theorem shows that it is NP-complete [50,77]. A problem in NP can be shown
to be NP-complete if it is within NP and some problem that is already established
to be NP-complete can be reduced to it. For a list of NP-complete problems see
Garey and Johnson (1979) [77].

Related to the class of NP-complete problems are the NP-hard problems. These
include problems to which all problems in NP can be reduced, but which are not
necessarily in NP themselves.

A lot of interesting and relevant planning and optimization problems turn out
to be NP-complete or NP-hard. As there is no known polynomial time algorithm to
solve them, they are often labeled as intractable. This notion can be quite mislead-
ing as it turns out that for many of these problems one can in fact find algorithms
to solve instances of practical relevance within reasonable time. Here the key usu-
ally is to exploit the structure that practical instances have in some way, to avoid
the worst case runtime. This thesis will focus on such structures that are related
to matchings in regular and hypergraphs, and which appear in several relevant
applications.

graphs

Unless stated otherwise a graph G = (V, E) will be given by a set of vertices V
and edges E.

An edge is a pair of vertices. If the pairs are ordered, the graph is called directed.
If the pairs are unordered the graph is called undirected. By default, graphs will
be undirected and directed graphs will be explicitly denoted as such. Edges will
often be treated as if they were sets (i. e., unordered pairs) in order to use common
set operations (like intersection, checking for inclusion of an element, etc.). This
will help simplify notation in certain cases and let us treat regular graphs and
hypergraphs (which will be introduced later) more similarly.

The edges of a graph can be weighted by introducing a weight we ∈ R for each
edge e ∈ E.

A graph is called bipartite if its vertices can be partitioned into two disjoint
sets such that every edge has one vertex in each of the two sets. To highlight a
bipartite graph, the two disjoint sets of vertices can be provided in the definition,
e. g., G = (U ∪V, E).

1.3 graphs 7

For a given graph G = (V, E) the function

NG(v) = {v′ : (v′ ∈ V \ {v}) ∧ (∃e ∈ E, (v ∈ e) ∧ (v′ ∈ e))}

defines the neighborhood of a given vertex v in graph G. Note that v is not part
of its own neighborhood. This definition is extended for nonempty sets of vertices
V̄ ⊆ V as NG(V̄) = (

⋃
v∈V̄ NG(v)) \ V̄. The inverse of NG is defined for some

nonempty subset V̄ ⊆ V as

N−1
G (V̄) = {v : (v ∈ V) ∧ (NG(v) ⊆ V̄)}.

The idea behind N−1
G is to give some kind of “pseudo inverse”, as NG may be

neither injective nor surjective and therefore does not need to have a proper inverse
function. The following theorem states some properties that N−1

G fulfills and which
justify the definition of it:

Theorem 1.1. For a given bipartite graph G = (V ∪U, E) and some subset V̄ ⊆ V the
following properties hold:

• N−1
G (NG(V̄)) ⊇ V̄

• NG(N−1
G (V̄)) ⊆ V̄

• If there is no V̄ ′ ⊆ V, V̄ ′ 6= V̄ with NG(V̄ ′) = NG(V̄) then

N−1
G (NG(V̄)) = V̄

• If there exists Ū ⊆ U such that V̄ = NG(Ū) then

NG(N−1
G (V̄)) = V̄

Proof. The properties are proven in the order they appear in the theorem.
Let v ∈ V̄. As V̄ ∩ NG(v) = ∅ due to the bipartiteness of G and by definition

of NG and we get NG(v) ⊆ NG(V̄) which implies v ∈ N−1
G (NG(V̄)) and therefore

N−1
G (NG(V̄)) ⊇ V̄.
Let v ∈ NG(N−1

G (V̄)). Then there exists v′ ∈ N−1
G (V̄) such that v ∈ NG(v′). As

v′ ∈ N−1
G (V̄) implies NG(v′) ⊆ V̄, it follows that v ∈ V̄.

Next let v ∈ N−1
G (NG(V̄)). This implies NG(v) ⊆ NG(V̄), which in turn means

that NG(V̄) = NG(V̄ ∪ {v}). If there is no V̄ ′ ⊆ V, V̄ ′ 6= V̄ with NG(V̄ ′) = NG(V̄),
the only possibility is that v ∈ V̄.

Finally let Ū ⊆ U such that NG(Ū) = V̄. From this theorems first property we
get that Ū ⊆ N−1

G (V̄). This implies V̄ = NG(Ū) ⊆ NG(N−1
G (V̄)).

From Theorem 1.1 we can conclude that NG being injective implies that N−1
G is

a proper left inverse and if NG is surjective then N−1
G is a proper right inverse. If

NG is only injective or surjective on some subsets, then N−1
G acts as the respective

proper inverse restricted to those subsets. Both NG and N−1
G are illustrated for a

bipartite graph in Figure 1.
For directed graphs one can distinguish between the incoming and the outgoing

neighbors, where

Ni
G(v) = {v′ : (v′ ∈ V \ {v}) ∧ ((v′, v) ∈ E)}

8 introduction

a

b

c

d

1

2

3

4

Ū

V̄N−1
G (V̄)

Figure 1: NG and N−1
G : Ū = {b, c}, NG(Ū) = {1, 2, 3} = V̄, N−1

G (V̄) = {a, b, c}

are the incoming and

No
G(v) = {v′ : (v′ ∈ V \ {v}) ∧ ((v, v′) ∈ E)}

are the outgoing neighbors.
The set of edges that are adjacent to a certain vertex v is denoted by E(v) =

{e : (e ∈ E) ∧ (v ∈ e)}. For a set of vertices V̄ ⊆ V the adjacent edges are those
containing one of the vertices in V̄ but not both:

E(V̄) =
⋃

v∈V̄

E(v) \ {e : ∃v1 ∈ V̄, ∃v2 ∈ V̄, (e ∈ E) ∧ (v1 ∈ e) ∧ (v2 ∈ e)}.

A subgraph of a graph consists of a subset of the original graph’s vertices and
edges. For a graph G = (V, E) the subgraph induced by a subset of the vertices
V̄ ⊆ V is the graph Ḡ = (V̄, Ē) with all edges of G for which all endpoints lie in
V̄, i. e., Ē = {e : ∃v, w ∈ V̄, (e = {v, w} ∈ E)}.

A path in a graph G = (V, E) is a sequence of alternating vertices and edges
p = (v1, e1, v2, . . . , ek−1, vk) (with vi ∈ V and ei ∈ E) such that no vertex is visited
more than once (vi 6= vj for each i 6= j) and such that the edges connect the
neighboring vertices (∀i ∈ [k − 1], ei = (vi, vi+1)). Note that the direction of the
edge does make a difference for a path in a directed graph. Related to paths are
cycles, which are defined in the same way as paths, except for having the same
start and end vertex v1 = vk (note that a single vertex is not considered a cycle). A
graph is said to contain an odd cycle if there exists a cycle of odd length in it.

A vertex v2 ∈ V is said to be reachable from v1 ∈ V if there exists a path from
v1 to v2. The set of all vertices which are reachable from a given vertex v ∈ V is
denoted as R(v). Note that v ∈ R(v) as it is reachable by a path of length 0.

A subset of vertices C ⊆ V is called a connected component if for v1, v2 ∈ C
it holds that v2 is reachable from v1 and C is of maximal cardinality with this
property, i. e., there is no vertex that can be added to C without destroying the
connectedness. For a graph G, let C(G) denote the set of all connected components
in G. For a vertex v ∈ V let C(v) ⊆ V be the connected component containing v.
Note that in an undirected graph R(v) = C(v), which does not always hold in
directed graphs.

1.3 graphs 9

A subset of vertices is called independet if there exists no edge in the graph
covering two vertices from the set.

Hypergraphs

The notation of hypergraphs resembles its counterpart for graphs. Again a hyper-
graph G = (V, E) is given by a set of vertices and a set of edges. The difference
is, that the edges E ⊆ 2V can contain an arbitrary amount of vertices instead of
exactly two. The notion of a neighborhood NG can be defined exactly as for regular
graphs.

A bipartite hypergraph G = (U ∪V, E) has its vertices partitioned into two dis-
joint sets U and V such that every edge has exactly one vertex in U. For clarity the
subset of vertices, for which this property holds will always be stated first when
defining a bipartite hypergraph. It is furthermore assumed that every edge con-
tains at least 2 vertices. Note, that in the literature there exist different definitions
of bipartiteness for hypergraphs. This thesis will stick with the aforementioned
definition.

Graph problems

Many relevant algorithmic problems can be modeled using graphs. A dominant
theme of this thesis are matchings, which are selections of edges such that each
vertex in the graph is covered by at most one of the chosen edges. As matchings
are fundamental for this thesis they have a dedicated chapter (see Chapter 2).

Two very simple problems are finding the maximal connected component C(v)
and the set of all reachable vertices R(v) for a given vertex in a graph. These sets
can be computed by performing a depth first search as shown by Tarjan (1972) [152].
Note that to find a connected component in a directed graph one needs to maintain
some additional data structures to avoid assigning vertices to a component from
which there is no path back to the other vertices. Tarjan (1972) [152] shows that this
can be done without increasing the runtime complexity. The runtime complexity of
these depth first search algorithms is O(|V|+ |E|). By repeating this procedure for
remaining vertices in the graph one can calculate the set of all maximal connected
components Cmax(G) with the same runtime complexity.

Two graph problems related to matchings are maximum s-t-flows and minimum
s-t-cuts. These are defined on weighted directed graphs G = (V, E) where V con-
tains two dedicated vertices s (called source) and t (called sink) and where all edge
weights are non negative.

An s-t-flow is a function f : E → R+, assigning a value to each edge (which
denotes the amount of flow flowing over the corresponding edge). An s-t-flow is
feasible if each vertex has the same amount of flow coming out of the vertex as
going into it (except for the source and the sink) and for which the flow on any
edge does not exceed the edge’s capacity:

∀v ∈ V \ {s, t}, ∑
v′∈Ni(v)

f ((v′, v)) = ∑
v′∈No(v)

f ((v, v′))

∀e ∈ E, f (e) ≤ we.

10 introduction

The maximum s-t-flow problem now searches for an s-t-flow with maximum
total value, where the value of a flow is defined as the total amount of flow leaving
its source (or, equivalently, entering its sink): ∑v∈No

G(s)
f ((s, v)). The first published

algorithm for the maximum flow problem is the Ford-Fulkerson algorithm with
a runtime complexity of O(|V| · |E|2) [71]. The best known maximum s-t-flow algo-
rithm today achieves a runtime complexity of O(|V| · |E|) [127].

A byproduct from the Ford-Fulkerson algorithm is the integral flow theorem:

Theorem 1.2 (Integral flow theorem). For a directed weighted graph G = (V, E) where
∀e ∈ E, we ∈ Z+ there exists a maximum s-t-flow f such that ∀e ∈ E, f (e) ∈ Z+.

Proof. The theorem follows directly from the way the Ford-Fulkerson algorithm
works, as it will produce an integral flow under the preconditions of the theorem
(see Ford and Fulkerson (1956) [71] or Ahuja et al. (1993) [5]).

Related to s-t-flows is the concept of s-t-cuts. An s-t-cut is a set C ⊆ V such that
s ∈ C and t /∈ C. The value of an s-t-cut is defined as the sum of the edge weights
on the border between C and V \ C:

∑
(v1,v2)∈E

v1∈C
v2 6∈C

w(v1,v2).

A relevant problem is now to find an s-t-cut of minimum value. An interesting
result shown by Ford and Fulkerson (1956) [71] is that in a given graph the maxi-
mum value of an s-t-flow is equal to the minimum value of an s-t-cut:

Theorem 1.3 (Max-flow min-cut). Given a weighted, directed graph G = (V, E). Then
the value of a maximum s-t-flow is equal to the value of a minimum s-t-cut in G.

Proof. See Ford and Fulkerson (1956) [71] or Ahuja et al. (1993) [5].

One can use an algorithm for determining a maximum s-t-flow in order to also
find a corresponding minimum s-t-cut. Given a maxium s-t-flow f this can be done
by using the auxiliary graph G′ = (V, E′) where E′ = {e : (e ∈ E) ∧ (we − f (e) >
0)} are the edges for which the flow does not use the entire edge capacity. Now
a minimum s-t-cut is a set R(s) of all vertices reachable from s. To see that this
procedure works as promised, see Ahuja et al. (1993) [5]. Using this algorithm the
minimum s-t-cut problem can be solved in the same runtime complexity as the
best current maximum s-t-flow algorithm.

polyhedral theory

The definitions in this section are based upon those given by Schrijver (1998) [146],
a book which is also recommended for further information about the topic.

The theory of polyhedra is fundamental for several concepts in linear program-
ming, which will be introduced later in this thesis. A polyhedron H is the inter-
section of finitely many closed half-spaces. A closed half-space can be seen as the
set of vectors on one side of or on a hyperplane, or more formally {x : (aᵀx ≤
b) ∧ (x ∈ Rn)}, a, b ∈ Qn, a 6= 0. Therefore we can define a polyhedron as

H = {x : (Ax ≤ b) ∧ (x ∈ Rn)}

1.4 polyhedral theory 11

where A ∈ Qm×n and b ∈ Qn. Every such matrix-vector pair defines a polyhedron.
Note that the restriction to Q implies that these polyhedra are rational polyhedra,
a necessary prerequisite for some theorems which this thesis relies on.

Two related concepts are polytopes and cones. Polytopes are commonly defined
using the concept of the convex hull: the convex hull conv(Y) of a set of vectors Y
is the smallest convex set containing all those vectors. This is equivalent to

conv(Y) = {x : ∃k ≥ 1, ∃x1, . . . , xk ∈ Y, ∃λ1, . . . , λk ≥ 0,

(x =
k

∑
i=1

λixi) ∧ (
k

∑
i=1

λi = 1)}.

A set T ⊂ Rn is a polytope, if there exists a finite set P ⊂ Rn of vectors such that
T = conv(P).

A polyhedral cone is defined by a matrix A ∈ Qm×n as

C = {x : (Ax ≤ 0) ∧ (x ∈ Rn)}.

The polyhedral cone is therefore the intersection of a finite number of linear half-
spaces {x : aᵀx ≤ 0}, 0 6= a ∈ Qn. It is possible to show that a polyhedral cone
can be represented as the conic (i. e., non negative) combination of a finite set of
vectors, similar to the finite representation of a polytope:

Theorem 1.4. Given a polyhedral cone C = {x : Ax ≤ 0}. Then there exists a finite set
R of vectors such that

C = {x : (x = ∑
r∈R

λrr) ∧ (λ ∈ R
|R|
+)}.

Proof. See Farkas (1902) [69], Minkowski (1910) [121] or Weyl (1934) [163].

There exists a strong relationship between polyhedra, polytopes and polyhedral
cones:

Theorem 1.5 (Decomposition theorem for polyhedra). A set H is a polyhedron iff
H = T + C for some polytope T and some polyhedral cone C.

Proof. See Motzkin (1936) [122].

Putting all these pieces together we now know that every polyhedron can be
decomposed into a polytope and a polyhedral cone which in turn can each be
represented by a finite set of generating vectors. This leads to the following, very
important theorem:

Theorem 1.6 (Minkowski). For every polyhedron H = {x : Ax ≤ b} there exist finite
sets P and R (usually denoted as extreme points and extreme rays) such that

H = {x : (x = ∑
p∈P

λp p + ∑
r∈R

µrr) ∧ (∑
p∈P

λp = 1) ∧ ((λ, µ) ∈ R
|P|+|R|
+)}.

Proof. See, e. g., Nemhauser and Wolsey (1988) [125].

12 introduction

Note that the sets P and R contain vectors of the underlying vector space and
not just representatives for them (which is a common alternative notation found
in the relevant literature).

One conclusion from these findings is the finite basis theorem for polytopes
which states that a polyhedron is bounded if and only if it is a polytope [121,151,163].

In later parts of this thesis there will be a particular interest in the polytope
defined by the convex hull of a set of incidence vectors conv(χS) over some family
of sets S . Having a perfect description of this polytope would allow us to easily
optimize over the set S . Note that this convex hull only includes incidence vectors
of S , as shown by the following lemma:

Lemma 1.7. For any family of sets S and some set S̄′ 6∈ S the incidence vector xS̄′ is not
contained in the convex hull of χS .

Proof. Assume for contradiction that there is S̄′ 6∈ S such that xS̄′ ∈ conv(χS).
Then xS̄′ must be a convex combination of the vectors in χS . Therefore there exists
a vector λ ≥ 0 such that ∑S̄∈S λS̄ = 1 and ∑S̄∈S λS̄xS̄ = xS̄′ . As all entries of xS̄ are
either zero or one, it follows that (λS̄ > 0) ∧ (xS̄

i = 1) implies xS̄′
i = 1, as xS̄′

i may
not be fractional. Equivalently follows that (λS̄ > 0) ∧ (xS̄

i = 0) implies xS̄′
i = 0

and therefore λS̄ > 0 implies xS̄ = xS̄′ , meaning that S̄′ ∈ S .

matroids

A matroid, as defined by Whitney (1935) [164], is a pair (S, I) of a finite set S and
I ⊆ 2S, I 6= ∅, for which holds

(S̄ ∈ I ∧ S̄′ ⊆ S̄)⇒ (S̄′ ∈ I) (1.1)

(S̄1, S̄2 ∈ S ∧ |S̄1| < |S̄2|)⇒ (∃u ∈ S̄2 \ S̄1, S̄1 ∪ {u} ∈ I). (1.2)

The elements of I are called independent. Condition (1.1) states, that subsets of
independent sets must again be independent and condition (1.2) states, that for
any independent set, which is not of maximal size within I , it is possible to add an
element from a larger independent set such that independence is preserved. These
concepts are closely related to linear independence in vector spaces. Similarly one
defines a base B of a subset S̄ ⊆ S as an inclusion-wise maximal independent
subset of S̄. By condition (1.2) it is easy to see that any two bases must be of equal
size [128]. The rank r(S̄) of subset S̄ is defined as the size of a basis of S̄.

Polymatroids

For the definition of a polymatroid we first need the notion of a submodular func-
tion. Given some ground set S then a function f : 2S → R is called submodular,
if

f (S̄1) + f (S̄2) ≥ f (S̄1 ∩ S̄2) + f (S̄1 ∪ S̄2) ∀S̄1, S̄2 ⊆ S.

A polymatroid can now be defined by some submodular function f : 2S → R as
the following polytope [65,147]:

Tf = {x : (x ∈ R
|S|
+) ∧ (∀S̄ ⊆ S, x(S̄) ≤ f (S̄)}.

1.6 linear programming 13

Polymatroids exhibit some very useful properties. For example, it is possible to
optimize some linear function over a polymatroid using a simple greedy algorithm.
Also one can easily describe all facets of the polytope.

For some matroid M = (S, I) one can show that the incidence vectors of I form
a polymatroid. More formally:

Theorem 1.8. For a matroid M = (S, I) the convex hull of its incidence vectors is given
by the polymatroid

conv(χI) = {x : (x ∈ R
|S|
+) ∧ (∀S̄ ⊆ S, x(S̄) ≤ r(S̄))}.

where r is the rank function of M.

Proof. See Edmonds (1970) [65].
Note that the specified polytope is a polymatroid, because the rank function of

M is submodular.

The polymatroid yielded from Theorem 1.8 is also called the matroid polytope.
A theorem by Edmonds (1970) [65] shows that the facets of a polymatroid can be

characterized using the following two properties:

• A subset S̄ ⊆ S is f -flat if ∀s ∈ S \ S̄, f (S̄ ∪ {s}) > f (S̄)

• A subset S̄ ⊆ S is f -inseparable if @(S̄1, S̄2), (S̄1 ∪ S̄2 = S̄) ∧ (S̄1 ∩ S̄2 = ∅) ∧
(f (S̄) = f (S̄1) + f (S̄2))

Using these properties, the facets of a polymatroid can be determined by the
following Theorem 1.9.

Theorem 1.9. For some submodular function f : 2S → R with f (∅) = 0 and ∀s ∈
S, f ({s}) > 0, the facets of Pf are given by

∀s ∈ S, xs ≥ 0

∀S̄ ⊆ S, S̄ is f -flat and f -inseparable, x(S̄) ≤ f (S̄).

Proof. See Edmonds (1970) [65]. Another good proof can be found in Schrijver
(2003) [147] on p. 777, Theorem 44.4.

linear programming

The goal of linear programming is to find a vector in a polyhedron that maximizes
(or minimizes) a given linear objective, (given that such a vector exists). Instances
of linear programming problems are denoted as linear programs (LPs) and are
fully characterized by the objective sense (i. e., max or min), the underlying vector
space (which in this thesis will be Rn for some n), its objective function (c), and
its constraints (i. e., the set of affine half-spaces that define the polyhedron). In the
remainder of this thesis LPs will usually have their variables constrained to be non
negative. An LP can be stated for example as max{cᵀx : (Ax ≤ b) ∧ (x ∈ Rn

+)}.
Any x in the given polyhedron is denoted as a feasible solution and a feasible

solution x∗, for which cᵀx∗ = max{cᵀx : Ax ≤ b}, as an optimal solution. The
numeric value cᵀx for a feasible x is called the objective value of x, the value cᵀx∗

of an optimal solution x∗ is called the optimum. An LP may be unbounded or

14 introduction

infeasible, i. e., there does not need to exist an optimal solution, e. g., in the cases
max{1ᵀx : x ∈ Rn

+} or max{x : (x ≤ −1) ∧ (x ∈ R+)}.
For more complex LPs the condensed notation from above may become difficult

to read. In such cases the definition of an LP will be spread over multiple lines
having the objective in the first line and the polyhedron defining constraints in the
following lines, as is common practice when defining linear programs.

Linear programs can be expressed in multiple, equivalent ways. An inequality
constraint aᵀi x ≤ bi can easily be transformed into an equality constraint aᵀi x + s =
bi by introducing an additional variable s ∈ R+ (often denoted as slack variable).
Conversely an equality constraint aᵀi x = bi can be transformed into the two in-
equality constraints aᵀi x ≤ bi and −aᵀi x ≤ −bi. LPs with a maximization objective,
less than or equal constraints, and non negative variables, i. e., of the form

max cᵀx

s.t Ax ≤ b

x ∈ Rn
+

will be said to be in standard form. If the constraints are equality constraints and
therefore the LP has the form

max cᵀx

s.t Ax = b

x ∈ Rn
+

it will be said to be in normal form. As mentioned before, it is easy to transform an
LP between standard, normal, and other formulations. They can therefore be used
interchangeably, depending which is most convenient in the situation at hand.

An important concept from the theory of linear programming is duality. For any
so called primal LP max{cᵀx : (Ax ≤ b) ∧ (x ∈ Rn

+)} one can define a correspond-
ing dual LP min{bᵀy : (Aᵀy ≥ c) ∧ (y ∈ Rm

+)} (whose dual would in turn be the
original primal LP). For such a pair of LPs there are two fundamental results, de-
noted as the weak and strong duality for linear programming. The weak duality
states, that the objective value of any feasible y of the dual LP is always an upper
bound for the objective value of a feasible x in the primal LP. The strong duality
states, that the respective optimal values are actually equal. Of course this requires
the existence of an optimum in both LPs. In fact, if one of the LPs is unbounded,
the other must therefore have the empty set as the defining polyhedron. Proofs for
the duality theorems can be found in Gale et al. (1951) [74].

Theorem 1.10 (Weak Duality Theorem of Linear Programming). Given a matrix
A ∈ Qm×n and two vectors c ∈ Qn, b ∈ Qm and two feasible solutions x ∈ {x : (Ax ≤
b) ∧ (x ∈ Rn

+)} and y ∈ {y : (Aᵀy ≥ c) ∧ (y ∈ Rm
+)}. Then cᵀx ≤ bᵀy.

Theorem 1.11 (Strong Duality Theorem of Linear Programming). Given a matrix
A ∈ Qm×n and two vectors c ∈ Qn, b ∈ Qm. Iff there exists

x∗ ∈ {x : (Ax ≤ b) ∧ (x ∈ Rn
+)}

such that

cᵀx∗ = max{cᵀx : (Ax ≤ b) ∧ (x ∈ Rn
+)}

1.7 solving linear programs 15

then there exists

y∗ ∈ {y : (Aᵀy ≥ c) ∧ (y ∈ Rm
+)}

such that

cᵀx∗ = bᵀy∗ = min{bᵀy : (Aᵀy ≥ c) ∧ (y ∈ Rm
+)}

An important building block for the duality theory is Farkas’ Lemma, which
states that a point is either contained in a given (polyhedral) cone or can be sepa-
rated from this cone by some hyperplane:

Lemma 1.12 (Farkas’ Lemma). For A ∈ Qm×n and b ∈ Qm exactly one of the two
following statements holds true:

∃x ∈ Rn,(Ax = b) ∧ (x ≥ 0)

∃y ∈ Rm,(Aᵀy ≥ 0) ∧ (bᵀy < 0).

Proof. See Farkas (1902) [69] for the original paper. A more recent proof can be
found in Schrijver (1986) [146].

As there are different ways to represent a polyhedron, the Farkas’ Lemma can
also be formulated in many different variants. For example if we start with (Ax ≤
b) ∧ (x ≥ 0) this is equal to (Ax + Is = b) ∧ ((x, s) ≥ 0) and therefore a solution
for this system exists if there is no y such that (Aᵀy ≥ 0) ∧ (y ≥ 0) ∧ (bᵀy < 0)
which again is equal to saying that (Aᵀy ≥ 0) ∧ (y ≥ 0) implies (bᵀy ≥ 0).

solving linear programs

To find an optimal solution for a given linear program, the prevalent algorithm
is the simplex method which dates back to the year 1947 when it was invented
by George Dantzig [55]. The simplex method is also fundamental for solving the
linear programing relaxation when handling integer programs (see Section 1.8).
For a thorough description of the simplex method (and other linear programming
algorithms) the reader may consult any text book about linear programming, e. g.,
Schrijver (1986) [146], Nemhauser and Wolsey (1988) [125], or Bertsimas and Tsitsiklis
(1997) [26].

In brief the simplex algorithm works by traversing the extreme points of the
feasible polyhedron until it cannot find a direction where the objective can be im-
proved, which means that the current extreme point is optimal. A core component
here is that each extreme point of a polyhedron {x : (Ax ≤ b) ∧ (x ∈ Rn

+)} can be
described by a subset B ⊆ [n] of the variable indices. When AB is the submatrix
of A restricted to the columns indicated by B, then one can find for each extreme
point (at least) one such subset (which will be called a basis) such that ABxB = b
(the corresponding extreme point for an appropriate basis can be found by solving
the system of linear equations A−1

B b). The simplex now traverses the polyhedron’s
extreme points by exchanging indices in the basis appropriately.

In a proper implementation the simplex method is guaranteed to reach an opti-
mal solution in finite time. While it is not of polynomial time complexity [103] (at
least up till now there exists no modification for which such a worst case bound
could be proven), it turns out that in the average case it performs very well [146].

16 introduction

There exist algorithms to solve linear programs with polynomial complexity. They
are usually denoted as interior point methods as they follow a path through the
feasible polytope towards an optimal point instead of walking over the polytopes
edges, as in the simplex method. The first such algorithm is the ellipsoid method
by Khachiyan [102] followed by the projective algorithm by Karmarkar [99]. Nowa-
days interior point methods can compete with the simplex method performance
wise. Note that the interior point methods do not need to find an optimal extreme
point, but can also terminate in the middle of an optimal face of the polyhedron.
For several applications later it will be important to find optimal extreme points
and not just optimal feasible solutions. If an optimal extreme point is needed, addi-
tional effort is required. This can also be achieved in polynomial time, as shown by
Megiddo (1991) [117] – therefore finding an optimal extreme point of a polyhedron
can be achieved in polynomial time.

(mixed) integer programming

While linear programming is already a powerful tool in itself, a lot of applications
do not allow solutions with fractional variable values. Therefore we will now look
at optimization problems which (partially) restrict the feasible region from poly-
hedrons to the integer points within a given polyhedron. Such a problem can be
stated in the generic form

max{cᵀx : (Ax ≤ b) ∧ (x ∈ R
n1
+ ×Z

n2
+)}

which will be called a mixed integer linear program (MILP). Often (e. g., in all
applications of this thesis) no fractional variables are needed. In this case we speak
of an integer linear program (ILP): max{cᵀx : (Ax ≤ b) ∧ (x ∈ Zn

+)}.

Solving integer programming problems

The most efficient algorithms nowadays for solving ILPs and MILPs are based on
the branch & bound framework. The basic idea is to relax the integrality constraints
of the problem, that were making the problem hard in the first place, thereby ob-
taining a linear programming relaxation. This LP relaxation can in practice be
efficiently solved to optimality, e. g., using the previously mentioned simplex algo-
rithm. If the solution of the LP relaxation turns out to be feasible for the original
MILP, one can immediately stop and accept the solution as optimal, because the
MILP optimum will never be able to surpass its LP relaxation in terms of the objec-
tive. Solutions feasible for the MILP will also be called “integral” (even though in
the mixed integer case some of the variables do not necessarily need to be in Z).

In many cases the LP relaxation will not have an integral solution, as for most
interesting problems the model constraints will not describe the convex hull of
its integer points (see Figure 2). If they would do so (at least around the optimal
solution/solutions), one can expect the LP solution to be integral. Section 1.9 gives
a class of problems where this is the case. But for many problems such a perfect
formulation is expected not to be easily obtainable (having a compact description
of the convex hull for some NP-hard problem would imply P=NP).

If the LP relaxation is not integral, one can perform one of the following three
major strategies:

1.8 (mixed) integer programming 17

objective

LP relaxation optimum

ILP optimum

Figure 2: The optimal solution of an ILPs LP relaxation, compared with the ILP optimum

heursitics : Using a heuristic one can try to find some feasible solution with a
good objective value. The heuristic might use the pool of already found solu-
tions or the solution of the LP relaxation as a guidance. The objective value
of the best known feasible solution is called the primal bound. A multitude
of integer programming heuristics exist, for example

• try to round LP relaxation (rounding heuristics)

• iteratively round and fix one variable and resolve the LP relaxation (div-
ing heuristics)

• change the objective function to punish fractional variables and resolve
the LP relaxation (objective diving heuristics)

• look in some vicinity of already found solutions for better ones, often
solving a smaller integer program in the process (large neighborhood
search heuristics)

A survey of the heuristics implemented in the “Solving Constraint Integer
Programs” (SCIP) solver was written by Berthold (2008) [25].

cutting planes : One can try to find some inequality which cuts off the current
LP optimum but does not remove any integral points from the feasible region.
Adding this inequality to the model might then lead to a new solution of the
LP relaxation which might now be integral or for which another separating
cut can be found. Some cutting plane methods need certain structures of the
model to work (e. g., knapsack covers, which use knowledge about the facets
of the knapsack polytope), others can be used for any integer program. Some
of these methods can be shown to converge to an optimal solution within a
finite number of steps but in practice often do perform poorly if used only
on their own. A survey of some modern day cutting plane methods can be
found in Marchand et al. (2002) [114].

branching : Another way to cut off the current LP optimum is to perform a
branching decision. In this way the feasible region is divided into two (or
more) distinct parts (called branches) where the current LP solution is not
included in any of those. A common branching decision is to choose some
variable, which is fractional in the current LP solution (let it’s index be i
and its value in the LP optimum be x∗i). Now one can divide the problem
into two branches, one with the constraint xi ≤ bx∗i c, and the other with
the constraint xi ≥ dx∗i e added. Each branch is again an MILP and can now
be solved on its own. Note that the number of branches grows quickly with

18 introduction

each additional branching decision and it might in the worst case require
a number of such decisions that is exponential in the number of variables.
Therefore it is important to discard of branches, if it can be shown that they
do not contain an optimal solution. A subproblem can be discarded, if its LP
relaxation has an objective worse than the current primal bound or if its LP
relaxation is infeasible.

The best LP relaxation objective over all current branches is called the dual
bound. The dual bound guarantees that no solution with a better objective
exists. Finding a feasible solution achieving the dual bound means that the
problem was solved to optimality. The relative difference between the primal
and the dual bound is called optimality gap and gives a measure of how
much room for improvement in the solution quality is potentially left (note
that one might already have the optimal solution at hand, but does not know
so as the dual bound is not sufficiently good yet).

The performing of branching is an important part in solving MILP models.
Algorithms building upon this idea are denoted as “branch & bound algo-
rithms”.

To arrive at an MILP solving procedure which performs sufficient in practice,
many techniques need to be combined in order to offset the limitations of each
other, leading to very complex implementations. Some state of the art MILP solvers
are Gurobi (developed by Gurobi Optimization, Inc.), CPLEX (developed by IBM)
and SCIP (developed by the Zuse Institute Berlin), of which SCIP’s source code is
openly available.

When comparing different solvers a commonly used measure for the progress
of the algorithm is the optimality gap. This quantity measures the relative distance
between the primal and the dual bound. There are slight differences in the def-
inition of the gap when it comes to different solvers. In the experiments of this
thesis, Gurobi and SCIP are used for different algorithms. Their definitions for the
optimality gap are (with db being the dual bound and pb being the primal bound):

gurobi :

|db− pb|
|pb|

scip :

|pb− db|
min{|pb|, |db|} if

pb
|pb| =

db
|db|

∞ otherwise

Special constraint types

Certain kinds of linear constraints appear in many linear programs, are well stud-
ied and most integer programming solvers have methods implemented to exploit
their structure.

Constraints of the form aᵀx ≤ b with a ≥ 0 and b ≥ 0 are called knapsack con-
straints, as an integer programming formulation for the knapsack problem (pack-
ing items of different weight into a knapsack of bounded capacity) usually has
exactly one such constraint, while requiring x ∈ {0, 1}.

1.9 total unimodularity and total dual integrality 19

A special class of knapsack constraints are set packing constraints where it is
furthermore required that a ∈ {0, 1}n and b = 1. Again related to these are set
partitioning constraints aᵀx = 1 and set covering constraints aᵀx ≥ 1, each with
a ∈ {0, 1}n. These constraints are used to model the set [packing/partitioning/-
covering] problem where one is given a family of sets, out of which one shall
choose a subset such that every element from the union of all sets appear in [at
most/exactly/at least] one of the chosen sets.

It is not uncommon for integer programming models to have many (or even
all) constraints exhibit one of the structures just described. For certain algorithms
introduced later it will be important that at least a certain part of the problem does
consist only of certain constraint types.

total unimodularity and total dual integrality

For any given combinatorial optimization problem, it is desirable to find a “good”
formulation for solving it. A common conception of a “good” formulation for
an ILP or MILP is a formulation where the LP relaxation is close to (or ideally
exactly) the convex hull of the feasible solutions. This section will look at a class of
problems where the LP relaxation will always be ideal, and which can therefore be
solved very efficiently. These problems will have integral polyhedra for which the
extreme points consist of only integral vectors and therefore the Simplex method
will result in an integral solution, no matter what the objective function is.

Given some polyhedron H = {x : (Ax = b) ∧ (x ≥ 0)} where A has full row
rank. Now a solution found by the Simplex method (see Section 1.7) will have a
corresponding basis B such that xB = A−1

B b and xN = 0. Whether this solution is
integral or not hinges on whether A−1

B b is integral or not. Properties leading to an
integral solution can be found using Cramer’s rule:

Lemma 1.13 (Cramer’s Rule). For A ∈ Rn×n nonsingular and b ∈ Rn with x = A−1b
we have that

∀i ∈ [n] xi =
det(Ai)

det(A)

where Ai is the matrix with column i being equal to b and all other columns are the original
columns from A.

Proof. See Cramer (1750) [52].

Assuming that A ∈ Zm×n and b ∈ Zm, Cramer’s rule ensures that our solution
x is integral if det(AB) ∈ {−1, 1} [27]. If this property holds for each basis B any
solution must be integral. Such matrices are called unimodular. When dealing with
a problem in standard form, this property must be modified in order to ensure
integrality even if not all constraints are active in the respective solution. This
leads to the definition

Definition 1.14. A matrix A ∈ Zm×n is totally unimodular if for each square sub-
matrix Ā we have det(Ā) ∈ {−1, 0, 1}.

Note that each entry in A is for itself a 1 × 1 submatrix and therefore A ∈
{−1, 0, 1}m×n. From Cramer’s rule it quickly follows that unimodular and totally
unimodular matrices lead to polyhedra where each extreme point is an integral

20 introduction

point. On the other hand one can show that total unimodularity is also in some
sense sufficient for integrality as stated by the following theorem:

Theorem 1.15. The matrix A ∈ Zm×n is totally unimodular if and only if H = {x :
(Ax ≤ b) ∧ (x ≥ 0)} has only integer extreme points for each b ∈ Zm such that H 6= ∅.

Proof. See, e. g., Bertsimas and Weismantel (2005) [27].

Due to these properties, it is very desirable for some integer programming prob-
lem to have a totally unimodular constraint matrix. The following theorem helps
us identify totally unimodular matrices:

Theorem 1.16. A matrix A ∈ Zm×n is totally unimodular if and only if it is possible to
partition any collection J of rows (columns) of A into disjoint sets J1 and J2 such that for
the rows (columns) aj of A holds

(∑
j∈J1

aj)− (∑
j∈J2

aj) ∈ {−1, 0, 1}k

with k ∈ {m, n} depending whether we are working with the rows or columns.

Proof. See Ghouila-Houri (1962) [79], or, for a more recent (and English) proof, see
Bertsimas and Weismantel (2005) [27].

From Theorem 1.16 it follows that, e. g., the node-edge incidence matrix of a
bipartite graph or of a directed graph is totally unimodular [27]. This largely con-
tributes to many optimization problems being very efficiently solvable if restricted
to such graph structures. An example is the bipartite matching (which will be
covered in Chapter 2).

Another concept defining integral polyhedra, is that of total dual integrality:

Definition 1.17. A polyhedron {x : Ax ≤ b} with rational A ∈ Qm×n and b ∈ Qm

is totally dual integral (TDI), iff for each integer vector c ∈ Zn, the corresponding
LP dual

min{bᵀy : (Aᵀy = c) ∧ (y ∈ Rm
+)}

has an integral optimum if the minimum is finite.

If A is a totally unimodular matrix, each rational vector b will yield a TDI sys-
tem [146]. It can be shown that if {x : Ax ≤ b} is TDI, the LP max{cᵀx : (Ax ≤
b) ∧ (x ∈ Rn

+)} will always have an optimal integral solution (see, e. g., Schrijver
(1986) [146]).

2
M AT C H I N G T H E O RY

Matchings are among the most well studied concepts in graph theory. Example
applications include the search for possible couples among the applicants of a
dating website, matching patients to appropriate doctors, distributing students
among study groups and many more.

This thesis deals with optimization problems that are not pure matchings but
contain a matching in some part of the overall structure (e. g., the assignment of
lectures to rooms that is part of a timetabling problem). The methods developed
here for solving such problems rely upon the theory that will be given in this chap-
ter. One of the most fundamental building blocks of this theory is the König-Hall
Theorem (which can be found later as Theorem 2.6). In order to be useful in the
context of more complex integer programming formulations, the properties of the
matching polytope, the partial transversal polytope, and the perfectly matchable
subgraph polytope will be studied. Among these the partial transversal polytope
is of particular interest for the upcoming applications in later chapters. Finally,
some results will be shown how the polyhedral theory for regular matchings can
be carried over to hypergraphs and how it fails to do so for popular matchings.

basic definitions

A matching will be defined as follows: given a graph G = (V, E) a matching M ⊆ E
is a set of edges such that no two edges share a vertex, i. e., (e, e′ ∈ M)∧ (e 6= e′)⇒
(e ∩ e′ = ∅). The set of all matchings in a given graph will be calledM(G).

Often one is interested in matchings that are not only valid but also have certain
additional properties. Let ν(G) = max{|M| : M ∈ M(G)} be the maximum size
a matching in G can have. Then a maximum matching M for G is a matching
that is of such maximum cardinality, i. e., |M| = ν(G). Also of relevance will be
matchings on subgraphs of the original graph. For example, given a subset V̄ ⊆ V
of a graph’s vertices, we want to know the cardinality of a maximum matching,
covering all the vertices in V̄. More precisely we look for a maximum matching in
the subgraph G′ = (V, E′) with E′ = {e : (e ∈ E) ∧ (∃v ∈ V̄, v ∈ e)} (i. e., edges
covering at least one vertex in V̄). The size of such a maximum matching will be
denoted as ν(V̄).

If the graph G is weighted with weights we for each edge e, each matching can
also be associated with a weight and one can define w(M) = ∑e∈M we as the weight
of matching M. A relevant use case later will be to find matchings that are on the
one hand of maximal cardinality but on the other hand minimize their weight,
i. e., among all maximum matchings we look for those with minimum weight. This
problem will be denoted as minimum weight maximum matching problem.

A perfect matching M is such that it covers every vertex of G. A perfect matching
is always a maximum matching. Note that all these definitions for matchings can
be applied just as well for hypergraphs.

21

22 matching theory

algorithms for matchings

The first algorithm for solving the maximum matching problem on any regular
graph was published by Jack Edmonds [66]. The algorithm iteratively improves an
existing matching (which is empty at the start) along augmenting paths (which will
be defined later), while contracting cycles of odd length into single vertices. It has a
runtime complexity of O(|V|4). An algorithm with a better runtime was published
by Micali and Vazirani (1980) [120] and has a runtime complexity of O(

√
|V||E|).

For dense graphs this complexity can – in theory – be improved using the algo-
rithm by Mucha and Sankowski (2004) [123], which is bounded by the complexity
of matrix multiplication, currently yielding a runtime complexity of approximately
O(n2.3729) (see Le Gall (2014) [109]), but which is not useful in practice due to the
huge (but constant) overhead involved.

If the underlying graph is bipartite, some specialized algorithms for the max-
imum matching problem exist which do not need some more complex ideas re-
quired for general graphs. The theoretical runtime complexities nevertheless are
the same here, i. e., we can expect to efficiently solve a bipartite maximum match-
ing in O(

√
|V||E|) time.

Apart from these combinatorial algorithms, one can apply (integer) linear pro-
gramming to find matchings with certain properties. This is only of minor interest
if all we want to do is find a maximum matching in a given graph. The aforemen-
tioned special purpose algorithms generally do this job much more efficient. But
if the matching problems appear as a part of some larger problem it can be benefi-
cial to exploit this matching structure as we will see later. Starting with Section 2.3,
the polyhedral properties of problems related to matchings will be studied more
closely.

As some of the underlying concepts are useful in some of the later proofs, a brief
introduction into Edmonds’ augmenting path algorithm for maximum matchings
will be given now. A special focus is given to bipartite graphs, as these are more
relevant for the remaining parts of this thesis. When restricted to bipartite graphs,
the algorithm becomes simpler, because it does not need to contract odd cycles, as
these do not occur in bipartite graphs.

Edmonds’ augmenting path algorithm

The augmenting path algorithm is based upon iteratively improving a matching
along so called augmenting paths, which are defined as follows:

Definition 2.1. Given a graph G = (V, E) and a matching M ⊆ E. A path p in G
is called M-alternating if every second edge of it is contained in M, i. e., the edges
are alternating between those in M and those in E \M.

A path p is called M-augmenting, if it is alternating and its first and last vertex
are not covered by M.

Given a matching M1 in graph G and an M1-augmenting path p. Then one can
create a new matching M2 by inverting M1 along the augmenting path p:

M2 = {e : (e ∈ p) ∧ (e 6∈ M1)} ∪ {e : (e ∈ M1) ∧ (e 6∈ p)}.

As p is M1-alternating, M2 is indeed a matching, because only every second edge
in p is covered by M2. As p is M1-augmenting we get |M2| = |M1|+ 1. Figure 3a

2.2 algorithms for matchings 23

a

b

c

d

e

f

(a) An initial matching (red) and an aug-
menting path (bold lines)

a

b

c

d

e

f

(b) The augmented matching

Figure 3: An example for an augmenting path iteration

shows an example for an augmenting path with the resulting augmented matching
depicted in Figure 3b.

An augmenting path is not only a sufficient way to improve a matching but it is
also necessary that such a path exists if the matching can be improved:

Theorem 2.2. Given some graph G = (V, E) and a matching M ⊆ E. Then M is a
maximum matching iff there is no corresponding M-augmenting path in G.

Proof. See, e. g., Lovász and Plummer (2009) [113].

The algorithm will therefore work correctly if it can reliably find existing aug-
menting paths. The construction of this will now be described very briefly. For
more details, please refer to Lovász and Plummer (2009) [113]. Assume we have a
graph G = (V, E) and some current matching M ⊆ E. The algorithm for finding
augmenting paths mainly requires a forest representation of a portion of the graph.
Each tree of this forest will have one of the unmatched nodes as its root. The for-
est is iteratively build up using the vertices covered by the current matching until
either an augmenting path is found or all vertices have been included in the forest
and the algorithm can report that no augmenting path exists.

At each step of the algorithm one of the unprocessed leaves of one of the current
trees is considered. For this vertex v ∈ V its (yet unprocessed) edges {v, v′} are
considered. If v′ is not yet part of the forest, it is appended to v in the forest. Note
that v′ must be part of the matching M and therefore there is some vertex v′′ such
that {v′, v′′} ∈ M. Vertex v′′ will not be included in the forest yet, and is appended
to v′.

If the vertex v′ is already part of the forest, then there are three cases:

1. The distance between v′ and the root of its tree is odd. In this case there is
nothing to do.

2. The distance between v′ and the root of its tree is even and the root of v′

is different than the root of v. In this case we found an augmenting path
between the two root nodes.

3. The distance between v′ and the root of its tree is even and the root of v′ is
the same as the root of v. In this case we found a cycle of odd length going
over the vertices v and v′. We can contract the vertices of this cycle into a

24 matching theory

single vertex (having all outgoing edges of the former vertices). It can be
shown [66] that searching an augmenting path in the resulting reduced graph
is equivalent to searching the augmenting path in G.

Note that the third case can only happen in non bipartite graphs as it means that
the algorithm has found a cycle of odd length, which does not exist in bipartite
graphs.

the matching polytope

A maximum matching of a bipartite graph G = (V, E) can easily be found if one
maximizes the quantity 1ᵀx of some vextor x residing inside a polytope describing
all feasible matchings via their incidence vectors. This polytope can be described
as follows [147]:

PM = {x : (x ∈ R
|E|
+) ∧ (∀v ∈ V, ∑

e∈E(v)
xe ≤ 1)}. (2.1)

It can be shown that polytope PM gives exactly the polytope of all incidence
vectors for a feasible matching:

Theorem 2.3. The convex hull of the incidence vectors describing a feasible matching in
G is given by polytope PM in (2.1).

Proof. From G being bipartite it can be inferred that the Matrix describing PM is
totally unimodular, which yields the result. For a proper proof see Thm. 18.2 by
Schrijver (2003) [147].

Using this knowledge, it is now easy to find a maximum matching via linear
programming. The corresponding maximum matching LP is

max{1ᵀx : (∀v ∈ V, ∑
e∈E(v)

xe ≤ 1) ∧ (x ∈ R
|E|
+)}. (2.2)

An interesting result is that the dual of this LP

min{1ᵀy : (∀{v1, v2} ∈ E, yv1 + yv2 ≥ 1) ∧ (y ∈ R
|V|
+)}

is the LP relaxation for the minimum vertex cover problem, i. e., the problem of
finding a smallest set of vertices such that every edge is covered by at least one of
these vertices. For a bipartite graph it can be shown that this formulation is again
exactly the convex hull of all incidence vectors encoding a valid vertex cover [147].

From these insights, alongside the strong LP duality (see Theorem 1.11), it is
now easy to conclude

Theorem 2.4. For a bipartite graph G, the size of a maximum matching is equal to the
size of a minimum vertex cover.

Proof. This theorem was already proven by Kőnig (1936) [104].

Note that if the underlying graph is not bipartite this result will not hold. In fact
the minimum vertex cover problem on general graphs is NP-hard [77]. Moreover
polytope PM (2.1) is totally unimodular if and only if the underlying graph is
bipartite and only in this case does it describe the matching polytope (see, e. g.,
Cor. 18.1b and Thm. 18.2 by Schrijver (2003) [147]).

2.4 the partial transversal polytope 25

x

y

z

1

2

3

Figure 4: An example of a bipartite graph corresponding to the family of sets A = {A1 =
{x, y}, A2 = {x}, A3 = {y, z}}

the partial transversal polytope

One concept closely related to the matching polytope is the partial transversal (PT)
polytope. A (partial) transversal is defined as follows [147]:

Definition 2.5. Given a set of sets A = {A1, . . . , An}. A set of n distinct elements
T = {a1, . . . , an} is called a transversal, if it contains exactly one element from each
set in A, i. e., ∀i ∈ [n], ai ∈ Ai.

A set of k ≤ n distinct elements T′ is a partial transversal if it is a transversal of
a subset Ā ⊆ A.

Another name for a transversal is “system of distinct representatives”. There is a
simple bijective relation between a set A as in Definition 2.5 and a bipartite graph
G = (U ∪V, E). Given A = {A1, . . . , An} one can define G by

U =
⋃

i∈[n]
Ai, V = [n], E = {{u, v} : (v ∈ [n]) ∧ (u ∈ Av)}.

Now it is easy to see that a transversal in A corresponds to a matching in this
graph that covers all vertices from U. A partial transversal therefore corresponds
to a matching which covers a certain subset of U. There may be multiple matchings
for a transversal, as a transversal is not ordered and therefore it might be possible
to match the elements from a transversal with different elements from [n]. On the
other hand a matching in a bipartite graph G = (U ∪V, E) can easily be associated
with exactly one (partial) transversal in {NG(v) : v ∈ V}. The set for which the
transversal is searched will always be the first one mentioned when defining a
bipartite graph G (usually U).

Figure 4 illustrates this relationship on a small example. On the set

A = {A1 = {x, y}, A2 = {x}, A3 = {y, z}}

there exists the transversal T = {a1 = y, a2 = x, a3 = z}. The set T′ = {a′1 =

x, a′2 = y} is a partial transversal, as it is a transversal on Ā = {A1 = {x, y}, A3 =

{y, z}} ⊆ A. Figure 4 is the bipartite graph corresponding to A. In this graph,
T corresponds to the matching M = {{x, 2}, {y, 1}, {z, 3}} and T′ corresponds to
M′ = {{x, 1}, {y, 3}}.

Our interest will now be to characterize whether a matching exists in a given
bipartite graph covering one side of the vertices or a specified subset of it, i. e.,

26 matching theory

wheter a transversal or a certain partial transversal exists. Probably the most well
known characterization of the existence of such a matching is the König-Hall The-
orem [87,104] also known as Hall’s Marriage Theorem, which will be stated first in
a version for transversals and then for bipartite graphs. This theorem is actually
an equivalent reformulation of the already stated Theorem 2.4. While the theorem
can be generalized to transversals of infinite size the following version will suffice
for our purposes:

Theorem 2.6. There exists a transversal for A = {A1, . . . , An} iff

∀I ⊆ [n], |I| ≤ |
⋃
i∈I

Ai|.

Proof. See Hall (1935) [87] or (for a more modern presentation) Schrijver (2003) [147].

As the existence of a transversal implies the existence of a matching in the cor-
responding bipartite graph, one can easily derive the following graph theoretical
equivalent:

Corollary 2.7. Given a bipartite graph G = (U ∪ V, E). There exists a matching in G
covering every node from U iff

|Ū| ≤ |NG(Ū)| ∀Ū ⊆ U. (2.3)

There exists a perfect matching in G iff additionally

|U| = |V|. (2.4)

Proof. The first part for (not necessarily perfect) matchings follows directly from
the relationship between partial transversals and matchings. The additional condi-
tion for perfect matchings can easily be concluded as a matching covering all U
must also cover all V if and only if the equality holds.

The characterizations from Theorem 2.6 and Corollary 2.7 basically consist of lin-
ear inequalities. We can exploit this to derive the polytope describing the set of all
partial transversals of a graph. First we define a set to hold all partial transversals
that exist on a given graph.

Definition 2.8. The set of all partial transversals of a graph G is given by T (G).

Similar to the matching polytope we describe a partial transversal T by an inci-
dence vector x ∈ R

|U|
+ where xu = 1 if u ∈ T. Let χT (G) be the set of all incidence

vectors corresponding to a partial transversal in G. One can now find the convex
hull conv(χT (G)) in the following way:

Theorem 2.9. The partial transversal polytope for a bipartite graph G = (U ∪ V, E) is
given by

conv(χT (G)) = {x : (x ∈ R
|U|
+) ∧ (x ≤ 1) ∧ (2.5)}

with

∀V̄ ⊆ V, x(U \ NG(V̄)) ≤ |V| − |V̄|. (2.5)

2.4 the partial transversal polytope 27

Proof. See Schrijver (2003) [147], corollary 22.9a. The proof also shows that the given
system is TDI (see also Definition 1.17).

The constraints (2.5) in Theorem 2.9 can also be formulated in several equivalent
variants, some of which are useful in later theorems.

Theorem 2.10. The set of constraints (2.5) is feasible for the same x ∈ R
|U|
+ as

∀V̄ ⊆ V, x(N−1
G (V̄)) ≤ |V̄| (2.6)

which in turn is equivalent to

∀Ū ⊆ U, x(Ū) ≤ |NG(Ū)|. (2.7)

Proof. This can be shown in three steps where in each step it is shown that one set
of constraints contains the next one.

(2 .5) ⇒ (2 .6): Let x ∈ R
|U |
+ be feasible for (2.5). Also let V̄ ⊆ V and V̄ C = V \ V̄ .

First observe that

(u ∈ N−1
G (V̄)) ⇒ (NG (u) ⊆ V̄)

⇒ (NG (u) ∩ V̄ C = ∅)

⇒ (u 6 ∈ NG (V̄ C))

⇒ (u ∈ U \ NG (V̄ C))

From here one can now easily conclude

x(N−1
G (V̄)) ≤ x(U \ NG (V̄ C)) ≤ |V | − |V̄ C | = |V̄ |

(2 .6) ⇒ (2 .7): Let x ∈ R
|U |
+ be feasible for (2.6). Now let Ū ⊆ U and V̄ =

NG (Ū). From Ū ⊆ N−1
G (V̄) it follows that

x(Ū) ≤ x(N−1
G (V̄)) ≤ |V̄ | = |N (Ū) |

(2 .7) ⇒ (2 .5): Let x ∈ R
|U |
+ be feasible for (2.7). Let again V̄ ⊆ V and V̄ C =

V \ V̄ . The first step is to show that

NG (U \ NG (V̄)) ⊆ V̄ C

To do so note that

(v ∈ NG (U \ NG (V̄))) ⇒
(∃u ∈ U , (u 6 ∈ NG (V̄)) ∧ (v ∈ NG (u)))

Assume that v ∈ V̄ . Then v ∈ NG (u) contradicts u 6 ∈ NG (V̄). Therefore
we must have v ∈ V̄ C . This leads to

x(U \ NG (V̄)) ≤ |NG (U \ NG (V̄)) ≤ |V̄ C | = |V | − |V̄ |

which concludes the theorem.

28 matching theory

Theorem 2.10 allows us to use different equivalent formulations for the partial
transversal (PT) polytope which will be useful in some applications later.

Yet another way of representing the PT polytope is in the form of a polymatroid
(see Section 1.5). The first step is to see that the set of partial transversals forms a
matroid:

Theorem 2.11. Given a bipartite graph G = (U ∪ V , E). Then MT = (U , T (G)) is
a matroid.

Proof. See Edmonds and Fulkerson (1965) [67] for a complete proof. The first ma-
troid condition (1.1) is clear, as the subset of a partial transversal must again be a
partial transversal by definition. The second condition (1.2) follows from Theorem
2.2, which shows that each partial transversal can be extended using augmenting
paths until it reaches the size of a maximum matching, while keeping the original
vertices in the partial transversal.

Corollary 2.12. The partial transversal polytope of a bipartite graph G = (U ∪ V, E) is
given by

conv(χT (G)) = {x : (x ∈ R
|U|
+) ∧ (∀Ū ⊆ U, x(Ū) ≤ ν(Ū))}

and is a polymatroid.

Proof. First take a look at the rank function of our matroid MT. For some subset
Ū ⊆ U, r(Ū) is the size of a largest subset from Ū which is in T , i. e., the largest
partial transversal contained in Ū. Therefore r(Ū) gives exactly the size of a maxi-
mum matching in the subgraph induced by the vertices Ū. So r(Ū) = ν(Ū).

Now the corollary follows directly from Theorem 1.8.

Which of these equivalent formulations of the partial transversal polytope is
most useful depends on the situation. For example the formulation obtained from
Corollary 2.12 has the disadvantage that it depends on the number ν(Ū) for all
subsets Ū ⊆ U. Calculating this is equivalent to calculating a maximum matching
for the subsets Ū which is more difficult than, e. g., just counting the neighbors of
Ū. But if we get the ν(Ū) anyhow, that formulation is quite useful. This can be the
case when we try to generate the partial transversal polytope with a separation
algorithm.

Separating the partial transversal polytope

When generating the constraints of the partial transversal polytope, it makes sense
to differentiate whether we are considering a fractional or an integer vector that
we want to separate. For fractional vectors, violated constraints of the kind given
by Theorem 2.10 can be found via a min-s-t-cut algorithm. If the vector is already
integral it is easier to calculate a maximum matching and generate the polymatroid
constraints from Corollary 2.12. Both variants are described below in greater detail.

Note that one should not separate constraints of the type x ≤ 1. Such variable
bounds are better included in the formulation directly from the start for efficiency
reasons. Many MILP solvers can handle binary variables more efficiently than gen-
eral integer variables.

2.4 the partial transversal polytope 29

fractional vectors The separation routine for matchings has long been
known and is described by Qi (1987) [134]. This paper also gives additional details
about the min-s-t-cut based separation routine described now.

Assume we are given a fractional vector x ∈ R
|U|
+ . One can now find a violated

constraint of the form (2.6) using a min-s-t-cut algorithm as follows. First construct
a directed, weighted helper graph Gh = ({s, t} ∪U ∪V, Eh) having edges and edge
weights:

∀u ∈ U, ((s, u) ∈ Eh) ∧ (w(s,u) = xu)

∀v ∈ V, ((v, t) ∈ Eh) ∧ (w(v,t) = 1)

∀(u, v) ∈ E, ((u, v) ∈ Eh) ∧ (w(u,v) = ∞).

Let C be the vertex set defining a minimum weight s-t-cut in Gh such that s ∈ C.
Assume w(C) < x(U). Then

x(N−1
G (V ∩ C)) = x(U ∩ C) > w(C)− x(U \ C) = |V ∩ C|.

Therefore x can be separated using the constraint x(N−1
G (V ∩ C)) ≤ |V ∩ C|. On

the other hand if there is no s-t-cut with weight lesser than x(U) then there is no
violated constraint and x is therefore feasible.

integral vectors Let x ∈ {0, 1}|U| and let U′ = {u : xu = 1}. Our goal is
to find a subset Ū ⊆ U such that x(Ū) > ν(Ū) or show that no such Ū exists.
This can be done by calculating a matching in the subgraph of G, restricted to
the vertices U′ ∪ V which will be denoted as G′ = (U′ ∪ V, E′). Let now M be a
maximum matching in G′. First assume that |M| = |U′|. In this case M is proof
that x represents a partial transversal and therefore no constraint can be violated.

Next assume that |M| < |U′|. As M being a maximal matching implies |ν(U′)| =
|M|, we immediately get x(U′) > ν(U′). Note that the corresponding constraint
(x(U′) ≤ ν(U′)) is not necessarily a facet of the partial transversal polytope. In
Chapter 4 the algorithm for separating the partial transversal polytope will be
explored further, after we have equipped ourselves with some additional theory. A
method will be shown how these cuts can be improved to yield facets of the partial
transversal polytope.

Using a matching algorithm instead of calculating a minimum weight s-t-cut
has the advantage that we just need a computational runtime effort of O(

√
|V||E|)

instead of O(|V||E|) required for the s-t-cut [127]. But note that in many applications
neither the time required for solving the matching nor for the minimum weight
s-t-cut will have a large overall impact on the solver runtime, as usually other parts
of the problem will require the lion’s share of the computational effort.

Facets of the partial transversal polytope

Using the formulation from Corollary 2.12 together with Theorem 1.9 provides a
way to check whether a subset Ū ⊆ U defines a facet via the inequality x(Ū) ≤
ν(Ū) or not. Also they can be helpful in order to list the facets for certain, specially
structured, partial transversal polytopes or to show that a polynomial number of
constraints suffices for its description.

30 matching theory

The following results link the definitions of inseparability and flatness to more
graph theoretical concepts.

Lemma 2.13. Given a bipartite graph G = (U ∪ V, E). If Ū ⊆ U with |Ū| > 1 is
ν-inseparable, then ν(Ū) = |N(Ū)|.

Proof. Obviously the inequality ν(Ū) ≤ |N(Ū)| has to hold. To show that |N(Ū)| ≤
ν(Ū), assume that there exists a maximal matching M ⊆ E over Ū and a vertex
v̂ ∈ N(Ū) such that there is no edge (u, v̂) ∈ M for some u ∈ U. Now choose
some û ∈ N(v̂) ∩ Ū and define Ū1 = {û}. Next let Ū2 = Ū \ Ū1. It follows that
Ū2 6= ∅ as |Ū| > 1. Of course ν(Ū1) = 1. Also it has to hold that ν(Ū2) = ν(Ū)− 1,
which can be seen by examining a maximal matching M′ over Ū2. If |M′| = ν(Ū),
then we can add the edge (û, v̂) to M′ and would get a matching over Ū with size
ν(Ū) + 1.

But ν(Ū) = ν(Ū1) + ν(Ū2) is a contradiction to Ū being ν-inseparable, which
concludes the proof.

Lemma 2.14. Given a bipartite graph G = (U ∪ V, E). If Ū ⊆ U with |Ū| > 1 is
ν-inseparable and ν-flat, then Ū = N−1(N(Ū)).

Proof. As |Ū| > 1 and Ū is ν-inseparable, Lemma 2.13 grants that ν(Ū) = |N(Ū)|.
Assume that Ū (N−1(N(Ū)) and let û ∈ N−1(N(Ū)) \ Ū. As N(Ū∪{û}) = N(Ū)

and ν(Ū) = |N(Ū)|, it follows that ν(Ū ∪ {û}) = ν(Ū) which is a contradiction to
the ν-flatness of Ū.

One conclusion from Lemma 2.13 and Lemma 2.14 is, e. g., that formulation (2.6)
from Theorem 2.10 includes the facets of the partial transversal polytope and is
therefore a valid description. This can be seen as an alternate route to that conclu-
sion.

Corollary 2.15. Given a bipartite graph G = (U ∪V, E). Then the following formulation
includes all facets of the partial transversal polytope

{x : (x ∈ R
|U|
+) ∧ (x ≤ 1) ∧ (∀V̄ ⊆ V, x(N−1(V̄)) ≤ |V̄|)}

Proof. First note that for Ū ⊆ U with |Ū| = 1 with Ū being ν-flat and ν-inseparable,
the facets are included in x ≤ 1. If |Ū| > 1, then Lemma 2.13 and Lemma 2.14 yield
a set V̄ = N(Ū) ⊆ V such that x(N−1(V̄)) ≤ |V̄| is the facet equivalent to x(Ū) ≤
ν(Ū). Therefore all of these facets are included in the given formulation.

In a similar way, one can show for bipartite graphs, exposing a certain struc-
ture, that the number of facets of the partial transversal polytope is polynomially
bounded and that one can produce a compact formulation for it. An example for
such a structure is given in the following definition.

Definition 2.16. A bipartite graph G = (U ∪ V, E) is V-ordered, iff there exists a
total ordering ≤ on the vertices V, such that for v1 ∈ V and u ∈ N(v1) holds

∀v2 ∈ V≥(v1), u ∈ N(v2)

where V≥(v1) := {v : (v ∈ V) ∧ (v1 ≤ v)}. Note that the set V≥(v1) hold the
vertices appearing after v1 in the ordering.

2.5 the perfectly matchable subgraph polytope 31

To illustrate Definition 2.16, imagine a bipartite graph representing the matching
of lectures to lecture rooms. A lecture can be matched into a room if the room is
large enough to host all students in the class. In this case the ordering would be
equivalent to ordering the rooms by their sizes.

For V-ordered graphs it can be shown that the number of facets of the partial
transversal polytope is linearly bounded by the size of V and a simple formulation,
also linearly bounded in size, containing all those facets can be given.

Theorem 2.17. Given a bipartite graph G = (U ∪V, E) that is V-ordered. Then

{x : (x ∈ R
|U|
+) ∧ (x ≤ 1) ∧ (∀v ∈ V, x(N−1(V≥(v))) ≤ |V≥(v)|)}

contains all facets of the partial transversal polytope.

Proof. With Lemma 2.13 and Lemma 2.14 as well as Corollary 2.15 already estab-
lished, all that remains to be shown is that for Ū ⊆ U with Ū = N−1(N(Ū)) exists
v ∈ V such that N(Ū) = V≥(v).

Choose v ∈ N(Ū) such that ∀v′ ∈ N(Ū), v ≤ v′, i. e., v is a minimal neighbor
of Ū according to the ordering of V. By G being V-ordered, each v′ ∈ V≥(v) must
also be a neighbor of Ū. On the other hand v′ ∈ V \V≥(v) cannot be in N(Ū) as v
was minimal with this property. Therefore Ū = V≥(v).

the perfectly matchable subgraph polytope

A concept very related to partial transversals are perfectly matchable subgraphs.
When working with partial transversals, we considered bipartite graphs and the
subgraphs stemming from removing vertices on one (fixed) side of the graph, the
focus will now be on determining which subgraphs in general will still permit
a perfect matching (as opposed to partial transversals where we did not need
matchings to be perfect). Again the goal will be to find a polyhedral description of
the corresponding incidence vectors. The work presented here is based upon the
work by Balas and Pulleyblank [17,18].

The focus will first be upon bipartite graphs, but the concepts will then be
generalized to arbitrary graphs. Given some bipartite graph G = (U ∪ V, E) let
x ∈ {0, 1}|U|+|V| be some incidence vector of the graph’s vertices. For this vector
the corresponding subgraph G(x) is the subgraph induced by the vertices encoded
by x, i. e., G(x) = (Ū ∪ V̄, Ē) with

Ū = {u : (u ∈ U) ∧ (xu = 1)}
V̄ = {v : (v ∈ U) ∧ (xv = 1)}
Ē = {{u, v} : ({u, v} ∈ E) ∧ (u ∈ Ū) ∧ (v ∈ V̄)}.

Now our interest will be in determining whether such an incidence vector in-
duces a subgraph for which a perfect matching exists or not. Let P(G) be the set
containing all incidence vectors which do induce such a perfectly matchable sub-
graph. As with the partial transversal polytope one can find a full description of
this set’s convex hull (which will be denoted as the perfectly matchable subgraph
polytope):

32 matching theory

Theorem 2.18. Given a bipartite graph G = (U ∪ V, E). Then the perfectly matchable
subgraph polytope is fully described by

conv(χP(G)) = {x : (2.8) ∧ (x(U) = x(V)) ∧ (x ≤ 1) ∧ (x ∈ R
|U|+|V|
+)}

with (2.8) being

∀Ū ⊆ U, x(Ū) ≤ x(N(Ū)). (2.8)

Proof. See Balas and Pulleyblank (1983) [17], who give three different proofs for this
theorem.

Note how the polytope given in Theorem 2.18 is very similar to the partial
transversal polytope from Theorem 2.9, especially when using the constraints (2.7)
for its description. This similarity is not arbitrary as both are based upon the König-
Hall Theorem (Theorem 2.6). In the perfectly matchable subgraph case one addi-
tionally needs a constraint ensuring that on both sides of the graph the same num-
ber of vertices is present (a trivial requirement for a perfect matching to exist) and
the constraints (2.8) need to count the vertices on the right hand side, which are
fixed when dealing with the partial transversal polytope.

When the underlying graph is not bipartite (G = (V, E)) additional effort is
required, as the graph may exhibit complicating structures (which in this case are
odd cycles). It was shown by Balas and Pulleyblank (1989) [18] that Theorem 2.18

can be generalized to arbitrary graphs. To do so we require the following subsets
of vertices:

D(G) = {V̄ : (V̄ ⊆ V) ∧ (∀e ∈ E, |e ∩ V̄| ≤ 1)}
∪ {V̄ : (V̄ ⊆ V) ∧ (|V̄| is odd) ∧ (V̄ contains odd cycle)}.

The set D(G) contains all independent vertex sets as well as the vertex subsets of
odd size which contain an odd cycle, i. e., which do not correspond to a bipartite
subgraph. For some vertex subset V̄ ⊆ V let Cmax(V̄) denote the set of maximal
connected components in the subgraph induced by V̄.

Using this it is possible to define the perfectly matchable subgraph polytope for
an arbitrary graph:

Theorem 2.19. Given a graph G = (V, E). Then the perfectly matchable subgraph poly-
tope is fully described by

conv(χP(G)) = {x : ((2.9)) ∧ (x ≤ 1) ∧ (x ∈ R
|V|
+)}

with (2.9) being

∀V̄ ∈ D(G), x(V̄)− x(NG(V̄)) ≤ |V̄| − |Cmax(V̄)|. (2.9)

Proof. See Balas and Pulleyblank (1989) [18].

Theorem 2.19 generalizes the preceding Theorem 2.18 and the later one can be
easily deduced from the more general setting.

In the applications considered in this thesis, only the partial transversal polytope
will be required to model the corresponding problems. But in similar applications
it might easily happen that perfect matchability is required, or that the underlying
graph will not be bipartite. In such cases it may be possible to extend the concepts
presented here appropriately to suit the respective setting.

2.6 bipartite hypergraph matchings 33

bipartite hypergraph matchings

The definition of a matching can be directly applied to hypergraphs, i. e., taking a
subset of edges such that each vertex is covered by at most one edge. But while
calculating most matching problems to optimality can be easily done on non hy-
pergraphs, it turns out that matchings on hypergraphs are generally NP-complete
– e. g., by reduction from 3 dimensional matching (see Karp (1972) [100]). A sub-
class of hypergraphs are bipartite hypergraphs which were defined in Section 1.3.
Matchings in bipartite hypergraphs find application, for example, in timetabling
problems (see Chapter 6). As this thesis aims at solving exactly such problems, the
focus of this section will be upon bipartite hypergraphs. Efficient algorithms for
exploiting bipartite hypergraph structures will be described in Section 4.2.

As defined in the introduction (see Section 1.1) a bipartite hypergraph G =

(U ∪ V, E) is a hypergraph such that every edge contains exactly one vertex from
U, i. e., for e ∈ E we have |e ∩U| = 1. A matching in a (bipartite) hypergraph is
defined exactly as for a regular graph, i. e., a subset M ⊆ E where distinct edges
e1, e2 ∈ M, e1 6= e2 do not share a vertex, i. e., e1 ∩ e2 = ∅. Matchings in bipar-
tite hypergraphs (and therefore also for hypergraphs in general) are NP-complete,
which can be easily shown by reduction from 3-dimensional matching, a problem
that is among Karp’s original 21 NP-complete problems [100]. For 3-dimensional
matching the underlying hypergraph G = (U ∪ V ∪W, E) consists only of edges
in U × V ×W, implying that G is also a bipartite hypergraph. Checking whether
a subset of a given size is a matching in a hypergraph can easily be done in poly-
nomial time by testing the elements for disjointness, implying that bipartite hyper-
graph matching is indeed NP-complete.

The concept of a partial transversal can be extended to bipartite hypergraphs
as follows: a subset Ū ⊆ U is a hypergraph partial transversal iff there exists a
matching M such that every element in Ū is covered by an edge in M. Again one
might wonder if the polytope of characteristic vectors in {0, 1}|U|, that are defining
hypergraph partial transversals, can be described by inequalities similar to the
partial transversal polytope. While this question is still open, so far it can be easily
shown that a description similar to the polymatroid formulation from Corollary
2.12 yields a polytope where the integer points are exactly the incidence vector we
were looking for:

Theorem 2.20. Given a bipartite hypergraph G = (U ∪V, E), define the polytope

QT (G) = {x : (x ∈ R
|U|
+) ∧ (∀Ū ⊆ U, x(Ū) ≤ ν(Ū))}.

Then x ∈ QT (G) and x ∈ Z|U| is equivalent to x ∈ χT (G).

Proof. First note that for Ū1 ⊆ Ū2 ⊆ U it holds that ν(Ū1) ≤ ν(Ū2) as the size of a
maximum matching can only increase when adding vertices to the corresponding
subgraph. Furthermore, the subset of a partial hypergraph transversal is again a
partial hypergraph transversal (as the corresponding matching can be derived by
removing edges from the previous one).

Let x ∈ χT (G) be an incidence vector of a partial hypergraph transversal and
Ūx = {u : xu = 1} be the set of vertices encoded by x. Assume there exists a vertex
subset Ū ⊆ U such that x(Ū) > ν(Ū). Now it holds that

x(Ū ∩ Ūx) = x(Ū) > ν(Ū) ≥ ν(Ū ∩ Ūx)

34 matching theory

which implies that Ū ∩ Ūx is not a partial hypergraph transversal. This in turn
implies that Ūx is not a partial hypergraph transversal, which is a contradiction
and therefore x ∈ QT (G)

Next let x ∈ QT (G) and x ∈ Z|U|. As for u ∈ U we have the constraint xu ≤
ν({u}) ≤ 1, it follows that x ∈ {0, 1}|U| and therefore x is in fact an incidence
vector. Let again Ūx = {u : xu = 1} be the vertex set encoded by x. Let M be
a matching of size ν(Ūx) over Ux. As |Ūx| = x(Ūx) ≤ ν(Ūx) the matching must
contain at least |Ūx| vertices and therefore cover Ūx completely, implying that Ux

is a partial hypergraph transversal and therefore x ∈ χT (G).

While bipartite hypergraph matching is NP-complete in general, the question
remains whether some relevant special cases might be solvable in polynomial time.
It will turn out that even very restricted cases are already NP-complete. On the
other hand hypergraphs with applications in timetabling (see Chapter 6) tend to be
very close to the edge dividing hypergraph matchings in P and those that are NP-
complete. In order to explore the border between the complexities, the following
classes of restrictions will be considered in various combinations:

• edge cardinality

• node degree

• k-partite – the nodes of V can be partitioned into sets V1, . . . , Vk−1, such that
every edge contains at most one vertex from each set (but still exactly one
from U). Note that this k-partiteness is in addition to the already bipartite
hypergraph where U is always its own partition. Bipartiteness in the sense
of this thesis shall not be confused with 2-partite (which would be a regular
bipartite graph)

• consecutiveness – the nodes of V can be ordered linearly such that for all
e ∈ E the nodes e ∩V are consecutive in that order, without interruption

• layered – we can partition the nodes of V into sets V1, . . . , Vk such that every
edge only covers one of the partitions: e ∈ E ⇒ ∃i, e ⊆ U ∪Vi

The three last classes of restrictions will make especially sense in the context of
timetabling problems (see Chapter 6) where events need to be matched to timeslots
and rooms, and we have on the one side vertices for each event and on the other
side vertices for each combination of a timeslot and a room. In these settings we
will have a layer per room. When k timeslots are available, the problem will be k-
partite. And when events span multiple timeslots these will usually be consecutive
(ordered by the starting time of the corresponding timeslot). Also many instances
will feature edge cardinalities that are mainly between 2 and 3. In Chapter 6 this
application will be further explored, but the reader might find it helpful to keep
these concepts in mind as a motivation for the preceding definitions.

edges of cardinality 2 or 2-partite This is the ordinary bipartite match-
ing and polynomially solvable, e. g., by one of the algorithms mentioned in Section
2.2.

2.6 bipartite hypergraph matchings 35

edges of cardinality 3, 3-partite This variant is NP-complete, as it is
exactly the aforementioned 3-dimensional matching.

nodes of degree at most 2, 3-partite This case is polynomially solvable
(see Garey and Johnson (1979) [77], page 221, problem SP1.

nodes of degree at most 3, 3-partite This case is again NP-complete (see
Garey and Johnson (1979) [77], page 221, problem SP1).

node degree in U is 1 and 2 in V This case is NP-complete by reduction
from independent set. An instance of independent set is given by a regular graph
G = (U , E). The decision problem is, whether for some positive integer k there
exists an independent set, i. e., a subset Ū ⊆ U such that no two vertices share
an edge (u , v ∈ Ū ⇒ {u , v} 6∈ E), of cardinality |Ū | = k. This problem is
NP-complete [77].

For the reduction we construct a bipartite hypergraph GH = {U ∪ E , F}, where
F = {{u} ∪ (

⋃
u∈e∈E{e}) : u ∈ U}. So for every vertex there is an edge contain-

ing that vertex alongside all its connected edges. Now every independent set in
G directly translates into a matching in GH and vice versa. The hypergraph GH

fulfills the required properties, as every vertex in U is covered by exactly one edge
and every vertex in E (note that E are vertices in GH while being edges in G) is
covered by exactly two edges.

node degree in V is 1 This case is polynomially solvable. For each node in U
we chose an arbitrary edge. This is possible as no other edge can share the nodes
from V .

node degree in U is 1, consecutive This case can be solved similar to
interval coloring. If we ignore the nodes from U (each of them has only one edge
anyhow so it does only matter if that edge is chosen, not which one) the edges can
be represented as intervals due to the consecutive ordering of the V nodes. Now
we can find a matching if we can color those intervals with 1 color which can be
done in time O (|V |) by inspecting every vertex for multiple edges.

consecutive , layered This case is NP-complete. The reduction is based
upon the list coloring problem on interval graphs, for which an NP-completeness
proof was done by Biró et al. (1992) [30]. A list coloring on interval graphs instance
is given by a set I of intervals (s , e) ∈ I where s , e ∈ T are start and end timeslots
drawn from a finite set T ⊆ N of timeslots such that s ≤ e. For intervals (s1 , e1)

and (s2 , e2) let (s1 , e1) ∩ (s2 , e2) be the intersection of the two intervals (i. e., if
s1 ≤ s2 this is { t : s2 ≤ t ≤ e1} and correspondingly in the case s2 ≤ s1).
Furthermore we are given a set C of colors and each interval i ∈ I has a list of
colors Ci ⊆ C to which it may be assigned. The goal is to find an assignment
m : I → C such that each interval is assigned a color from its list (m(i) ∈ Ci)
and such that for two intervals with the same color the intervals do not intersect
((i1 6= i2 ∧ m(i1) = m(i2)) ⇒ (i1 ∩ i2 = ∅)).

36 matching theory

Now construct the following bipartite hypergraph matching instance. Let G =

(I ∪ T × C , E) with edges defined as

E = {{ i} ∪ {(c , t) : (t ∈ T) ∧ (s i ≤ t ≤ e i)} : ((s i , e i) = i ∈ I) ∧ (c ∈ Ci)} .

Note that we get one hyperedge per interval and feasible color, therefore the num-
ber of edges is bounded by |I| · |C|. Each matching in G assigns to the matched
intervals a color and the properties of the matching ensure that no overlapping
intervals receive the same color. Equivalently an assignment of colors corresponds
to a feasible matching in G. Therefore the list coloring problem can be solved iff G
has a maximum matching of size |I|.

popular matchings

This section will take a closer a look at a problem variant of the classical matching
that uses a quite different objective than the simple maximization of the number
of matched vertices or the weight of the chosen edges. The work presented in this
section was conducted together with Oliver Scheel, a bachelor student of this the-
sis’ author (also see Oliver Scheels bachelor’s thesis [144]). The concept of popular
matchings was introduced by Gärdenfors (1975) [76] in the context of the stable mar-
riage problem. The first polynomial time algorithm, as well as much of theoretical
results needed for our work, were introduced by Abraham et al. (2007) [2].

The concern of popular matchings is to to find a matching such that for no other
matching more vertices would be better off than in the present one. The satisfaction
of a vertex will be measured relative to the objective the vertex could achieve in
other matchings. Given a weighted bipartite graph G = (U ∪ V, E) where, for
example, U is a set of workers who shall each be matched to a job from V. An
edge {u, v} indicates that u ∈ U can perform job v ∈ V and the weight w{u,v}
tells us the priority with which u would like to be matched to v, lower priorities
indicating higher satisfaction with the job. Now a worker from U would prefer a
matching M1 over a matching M2 if she is assigned a lower weight edge in M1 than
in M2 or if she was not matched in M2 at all but in M1. Note that only one side of
the bipartite graph will be considered when comparing the matchings quality – in
the example the jobs from V do not utter any preferences. In the bipartite graphs
the set of vertices, which is giving the preferences, shall be denoted as U.

In order to define popular matchings more formally, let us be given a bipartite
graph G = (U ∪V, E). There are two variants of the problem:

without ties There may not be two edges with the same weight adjacent to
one u ∈ U: ∀u ∈ U, v1, v2 ∈ V, ({u, v1}, {u, v2} ∈ E) ∧ (v1 6= v2) ⇒ w{u,v1} 6=
w{u,v2}

with ties There may be ties and therefore there are no restrictions on the edge
weights.

One possible (different than using popular matchings) way to model such a
problem would be by calculating a minimum weight maximum matching, which
would minimize the total amount of priorities. A drawback of this model is, that
for the benefit of a single vertex, many others might be worse off than they could
be, if the other vertex were excluded.

2.7 popular matchings 37

u1

u2

u3

v1

v2

1
2

1

2

1 2

Figure 5: An example of a graph without popular matching

Furthermore in many situations there is no absolute scale for measuring the
vertices individual priorities. Minimizing the total sum of the matchings weight
implicitly assumes that all weights use the same absolute scale, which often is not
the case when the vertices are allowed to specify their priorities themselves.

To circumvent these shortcomings, one can measure the popularity of one match-
ing over another one as the relative number of vertices from U preferring the
matching over the other one. A vertex u ∈ U will prefer a matching M1 over
a matching M2 if either it is not matched in M2, i. e., ∀v ∈ V, {u, v} 6∈ M2

or if it is matched with lower weight in M1, i. e., ({u, v1} ∈ M1) ∧ ({u, v2} ∈
M2) ∧ (w{u,v1} < w{u,v2}). Now a matching M1 is more popular than a matching
M2 if more members of U prefer M1 over M2 than the other way round.

A matching M is called popular if there is no matching M′ that is more pop-
ular than M. Note that a popular matching does not need to exist in a given
graph. Such a case is illustrated in Figure 5 where 3 members of U have the ex-
act same preferences. Now we can see that matching M2 = {{u2, v1}, {u3, v2}} is
more popular than M1 = {{u1, v1}, {u2, v2}} as M2 is preferred by u2 and u3. But
M3 = {{u3, v1}, {u1, v2}} is more popular than M2 as M3 which is preferred by u1

and u3. In turn M1 is preferred by u1 and u2 over M3. Due to the graph’s symmetry
we get the same results for other permutations.

The work by Abraham et al. (2007) [2] gives some detailed properties that a pop-
ular matching will exhibit (if it exists). These characterizations slightly differ for
matchings with and without ties. For the main result of this section only matchings
without ties are relevant (as matchings with ties are more general and the result can
be easily carried over). For a popular matching in a bipartite graph G = (U ∪V, E)
without ties, for each vertex in U only two edges are actually relevant. The first
one will be the most preferred one for the vertex. The corresponding vertex from
V will be denoted as the f -vertex:

f (u) = arg min
v∈N(u)

w{e,v}.

The second relevant edge will be the most preferred one which is not connected
to some f -vertex (of any vertex in U). The corresponding vertex from V will be
denoted as the s-vertex. Note that there might not exist any such vertex in which
case a virtual s-vertex will be introduced. Matchings to such vertices will later

38 matching theory

represent popular matchings where the corresponding vertices from U are left
unmatched.

s(u) =

arg minv∈N(u)\{v:∃u, f (u)=v} w{v,u} if N(u) \ {v : ∃u, f (u) = v} 6= ∅

vvirt
u otherwise.

The following theorem was shown by Abraham et al. (2007) [2], yielding that one
can restrict the search for a popular matching to graphs consisting only of U and
their f - and s-vertices:

Theorem 2.21. Given a bipartite graph G = (U ∪V, E) without ties. Let a corresponding
helper graph Gh = (U ∪Vh, Eh) be defined with

Vh =
⋃

u∈U

{ f (u), s(u)}

and

Eh =
⋃

u∈U

{{u, f (u)}, {u, s(u)}}.

A matching M ⊆ E is a popular matching in G if and only if M ∪ {{u, vvirt
u } : (u ∈

U) ∧ (@e ∈ M, u ∈ e)} is a matching in Gh covering all u and all f -vertices.

Proof. See Abraham et al. (2007) [2], theorem 2.5.

By Theorem 2.21 one can search for a popular matching by finding a regular
matching (fulfilling the requirements from the theorem) in the helper graph Gh.
This makes it much easier to detect graphs where no popular matching is possi-
ble. As a side effect the theorem can also be used to efficiently compute popular
matchings (or prove the non existence of such). This can be done by calculating
a maximum matching in Gh. Note that in case not all f -vertices are covered, one
can always exchange the edges in the matching such that a vertex, having the non
covered f -vertex as its f -vertex is matched to this vertex instead of the s-vertex it
was previously matched to. In the example shown in Figure 5 one can now easily
see that no popular matching exists as the helper graph will look exactly like the
original graph but has three vertices in U but only two in Vh.

The larger the graph is, the more likely it becomes that it exhibits a substructure
preventing a popular matching (see Scheel (2014) [144] for an experimental study on
this effect). Removing nodes from U might fix such issues – in Figure 5 removing
any vertex from U would again allow a popular matching. Let therefore a subset
Ū ⊆ U be called popular matchable iff there exists a popular matching in the
subgraph G(Ū ∪V).

As the concept of a popular matchable subset looks a lot like a modified version
of the partial transversal, one might wonder whether the polytope that contains ex-
actly the incidence vectors of the popular matchable subsets can be described in a
similar way as the partial transversal polytope. Let χpop(G) ⊆ {0, 1}|U| be the set of
incidence vectors corresponding to subsets of U, for which the corresponding sub-
graph of G has a popular matching. Now our goal is to find a simple description
of conv(χpop(G)) (which will be called the popular partial transversal polytope)
similar to that one of the partial transversal polytope.

2.7 popular matchings 39

u1

u2

u3

u4

v1

v2

v3

v4

1

1
1

1

2
2

2

2

3

3

3

Figure 6: An example graph where knapsack constraints are insufficient to describe the
popular partial transversal polytope

It turns out that such a description must be more complex than it was for partial
transversals. The following counter example shows that constraints of the knapsack
type are not sufficient. It was developed together with my bachelor student Oliver
Scheel and can also be found in his bachelor’s thesis [144].

Theorem 2.22. There exists a bipartite graph G = (U ∪ V, E) without ties such that
conv(χpop(G)) cannot be described exclusively with constraints of the knapsack type (i. e.,
constraints of the form aᵀx ≤ b for a ≥ 0 and b ≥ 0).

Proof. Consider the graph G = (U ∪ V, E) shown in Figure 6 which is described
by the vertices and edges

U = {u1, u2, u3, u4}, V = {v1, v2, v3, v4}
E = {{u1, v1}, {u1, v2}, {u1, v3}, {u2, v1}, {u2, v2}, {u2, v3}, {u3, v1}, {u3, v2},
{u3, v4}, {u4, v2}, {u4, v4}}

with edge weights

w{u1,v1} =w{u2,v1} = w{u3,v1} = w{u4,v2} = 1

w{u1,v2} =w{u2,v2} = w{u3,v2} = w{u4,v4} = 2

w{u1,v3} =w{u2,v3} = w{u3,v4} = 3.

Now consider the subgraph resulting when only choosing the vertices {u1, u2, u3}
from U. For this subgraph the corresponding helper graph is shown in Figure 7a.
By Theorem 2.21 no popular matching can exist as there are more vertices from U
present than from V.

On the other hand for the entire graph with all U vertices, the helper graph is
shown in Figure 7b. Here a popular matching does exist, e. g.,

M = {{u1, v1}, {u2, v3}, {u3, v4}, {u4, v2}}

which means that the addition of vertex u4 actually makes a popular matching
possible that would not have existed without it.

40 matching theory

u1

u2

u3

v1

v2

(a) The helper graph for the subgraph
with vertices u1, u2, and u3

u1

u2

u3

u4

v1

v2

v3

v4

(b) The helper graph for the entire origi-
nal graph

Figure 7: Helper graphs for two subsets of the U vertices

The subset {u1, u2, u3} is described by the incidence vector (1, 1, 1, 0)ᵀ while that
of U is described by (1, 1, 1, 1)ᵀ. Now for a ∈ R

|U|
+ it holds that

aᵀ(1, 1, 1, 0)ᵀ ≤ aᵀ(1, 1, 1, 1)ᵀ

which implies that no knapsack constraint of the form aᵀx ≤ b can at the same
time be valid for (1, 1, 1, 1)ᵀ and violated by (1, 1, 1, 0)ᵀ.

The counter example from Theorem 2.22 also serves as a case showing that the
popular partial transversal polytope cannot be a polymatroid as the constraints
describing a polymatroid are a subset of the knapsack type constraints. While so
far the description of the popular partial transversal polytope is not known, it is
now clear that finding it will require a different approach than finding the partial
transversal polytope.

3
D E C O M P O S I T I O N M E T H O D S

In practice optimization problems can easily become very large, often to a point
where simply putting an MILP model of it into a general purpose solver will not
yield good results in a reasonable amount of time. But such problems often have a
lot of inherent structure which can be exploited to solve them more efficiently. For
example if one ignores certain constraints or fixes a set of variables, the resulting
formulation might become much easier to solve (e. g., by using a special purpose
combinatorial algorithm). This smaller problem will be denoted as the subproblem.
In order to find an optimal solution to the original model one needs another stage
where either the ignored constraints are taken into account or the variable fixings
are determined. This stage will be denoted as the master problem. Generally the
master problem will have to make several calls to the subproblem in order to
achieve optimality.

Usually it is not trivial to determine a good decomposition, i. e., a selection of
variables or constraints which shall be deferred to the subproblem, for a given for-
mulation. Obviously relaxing all or no constraints, or fixing all or no variables does
not yield any benefit. But between these two extrema may exist several meaningful
decompositions which all pose a trade off between the time needed for solving the
subproblems versus the effort put in the master problem.

This chapter will give a short introduction into the two decomposition schemes
known as the Dantzig-Wolfe decomposition [56] and its dual, the Benders’ decompo-
sition [24]. Dantzig-Wolfe deals with complicating constraints by ignoring them in
the subproblem which then communicates its solutions back to the master problem
by a technique called column generation. In the Benders’ setting the subproblem
is derived by fixing complicating variables and the information of the subproblem
is incorporated in the master problem by adding additional constraints. In both
cases one first derives a reformulation of the original problem that is based upon
the extreme points and rays describing the subproblem (see Theorem 1.6). This
reformulation is then solved via implicitly enumerating those extreme points and
rays.

Even though these decomposition schemes originate from pure LPs, they often
really start to shine when applied to MILPs. Each of the two techniques will first
be introduced for the LP case and then adapted to the MILP setting.

further reading

This chapter only covers the concepts necessary for a proper understanding of
the following topics of this thesis. In order to further delve into the details of
decompositions and related concepts, the reader shall be referred to the following
literature:

• The book “Column Generation” [63] explains the technique of column gener-
ation from the very basics to some recent developments.

41

42 decomposition methods

• Chapter 13 of the book “50 Years of Integer Programming” [97] gives a good
overview about Dantzig-Wolfe and Benders’ decomposition, column genera-
tion, and the Lagrangean relaxation.

dantzig-wolfe decomposition

Our aim is to solve an MILP of the form

max{cᵀx : (Ax ≤ b) ∧ (Dx ≤ d) ∧ (x ∈ X)} (3.1)

where X can be Rn
+, Zn

+ or R
n1
+ ×Z

n2
+ . Matrix D is assumed to be of dimension

m1 × n and A of dimension m2 × n.
In many applications {x : (Dx ≤ d) ∧ (x ∈ X)} is chosen such that solving an

optimization problem on this domain is easy, while A and b encode complicating
constraints. As stated before, it is not immediately clear what an easy problem
is. A family of subproblems that is noteworthy are those that have block diagonal
structure. The clear advantage this provides is that blocks can be treated separately
from each other. Later in this section this case will be covered in more detail.

For the start we will look at the case where X = Rn
+, i. e., we deal with a regular

linear program. In Section 3.3 this will then be extended to the MILP setting.
Solving the LP relaxation of (3.1) means optimizing a linear function over the in-

tersection of two polyhedra. The constraints given by D and d define the following
polyhedron:

Hsub = {x : (Dx ≤ d) ∧ (x ∈ Rn
+)}.

The basic building block for Dantzig-Wolfe as well as Benders’ decomposition is
the Minkowski-Weyl Theorem (Theorem 1.6) which gives us a representation of a
polyhedron by a finite set of extreme points (P) and rays (R):

Hsub = {∑
p∈P

λp p + ∑
r∈R

µrr : (∑
p∈P

λp = 1) ∧ ((λ, µ) ∈ R
|P|+|R|
+)}.

Under the assumption that we have all of these extreme points P and rays R at
hand one can now write our original problem as

max ∑
p∈P

(cᵀp)λp + ∑
r∈R

(cᵀr)µr

s.t ∑
p∈P

(Ap)λp + ∑
r∈R

(Ar)µr ≤ b

∑
p∈P

λp = 1

(λ, µ) ∈ R
|P|+|R|
+ .

(3.2)

This new formulation is called the master problem. Of course stated this way
the new formulation seems to actually make things worse as we now have to
enumerate all extreme points and rays of Hsub in order to write down the master
problem. As these may be many, one needs a way to shortcut this. The method of
choice for achieving this is delayed column generation (or just column generation)
which will be explained in the next paragraph.

3.2 dantzig-wolfe decomposition 43

Column generation

For an algorithm that is able to solve the master problem (3.2) to be of practical
usefulness, it is usually crucial to avoid enumerating all the extreme points and
rays. The trick to achieve this is to only work with a subset of P and R, and adding
more points and rays only when they are needed. So assume we have some subsets
P̄ ⊆ P and R̄ ⊆ R which may also be empty. When only working with these we
get the so called restricted master problem:

max ∑
p∈P̄

(cᵀp)λp + ∑
r∈R̄

(cᵀr)µr

s.t ∑
p∈P̄

(Ap)λp + ∑
r∈R̄

(Ar)µr ≤ b

∑
p∈P̄

λp = 1

(λ, µ) ∈ R
|P̄|+|R̄|
+ .

(3.3)

The restricted master problem can be solved as a regular linear program. Of
course an optimal solution (λ∗, µ∗) of (3.3) is not necessarily also an optimal solu-
tion to the master problem (3.2). Furthermore the restricted master problem might
even be infeasible while the master problem is not. In order to find out whether
we need to add some extreme point or ray to P̄ or R̄ we take a look at the dual of
(3.2):

min bᵀπ + ρ

s.t (Ap)ᵀπ + ρ ≥ cᵀp ∀p ∈ P (3.4)

(Ar)ᵀπ ≥ cᵀr ∀r ∈ R (3.5)

(π, ρ) ∈ R
m2
+ ×R.

Of course when removing all constraints but those corresponding to the points
and rays in P̄ and R̄ from this formulation, we get the dual of the restricted master
problem.

First assume that we have an optimal solution (λ∗, µ∗) of (3.3). Its corresponding
dual solution be (π∗, ρ∗). If this dual solution satisfies all constraints (3.4) and (3.5)
then (λ∗, µ∗) must also be optimal for the master problem. Otherwise the violated
constraints correspond to extreme points and rays from which we need to add at
least one to P̄ or R̄. That means we want to either find a p′ ∈ P or an r′ ∈ R for
which the corresponding inequality holds:

(cᵀ − πᵀA)p′ > ρ

(cᵀ − πᵀA)r′ > 0.

This can be achieved by solving the linear program

max {(cᵀ − πᵀA)x : x ∈ Hsub}. (3.6)

The linear program (3.6) is often also referred to as the pricing problem but in order
to keep the terminology consistent together with the Benders’ decomposition, it
will be called subproblem in this thesis.

44 decomposition methods

Now let us look at the possible results we can get from solving the subproblem.
If the subproblem is infeasible, then Hsub must be empty. Therefore there also
exists no solution to our original problem. Next if (3.6) is unbounded we can get
an extreme ray r′ of Hsub such that (cᵀ − πᵀA)r′ > 0 which we can then add
to R̄. The last possibility is that the subproblem yields an optimal solution p′. If
(cᵀ − πᵀA)p′ > ρ, then we add p′ to P̄. Otherwise we can conclude that there are
no violated constraints of the dual master problem. In that case we have found an
optimal solution to the original problem. Note that optimizing (3.6) ensures that
we do not miss any extreme point or ray that might be valuable.

Lastly let us look at the case where (3.3) turns out to be infeasible. This might
mean that the entire problem is infeasible but it also could (and often does) mean
that we need to add variables in order to reach a first feasible solution. Such ex-
treme rays or points can be identified by solving a problem similar to (3.6). Instead
of the dual solution we use Farkas’ Lemma (Lemma 1.12) to derive a vector (π, ρ)

satisfying

∀p ∈ P̄, (Ap)ᵀπ + ρ ≥ 0

∀r ∈ R̄, (Ar)ᵀπ ≥ 0

π ≥ 0

dᵀπ + ρ < 0.

(3.7)

To see that such a (π, ρ) has to exist if (3.3) is infeasible while (3.2) has a feasible
solution, we look at the standard form of the constraints

∑
p∈P̄

(Ap)λp + ∑
r∈R̄

(Ar)µr + s = b

∑
p∈P̄

λp = 1

(λ, µ, s) ∈ R
|P̄|+|R̄|+m2
+

which fulfills the criteria of Lemma 1.12 and therefore a (π, ρ) satisfying (3.7) has
to exist.

Now we need to solve a slightly modified subproblem (also known as Farkas
pricing):

min {(πᵀA)x : x ∈ Hsub}. (3.8)

This is effectively the old sub problem where the c coefficients are set to 0. Again
if (3.8) is unbounded we add a corresponding extreme ray to R̄ and if there is an
optimal solution x∗ with (πᵀA)x∗ < −ρ, it is added to P̄. Otherwise the master
problem turns out to be infeasible, as there exists no extreme point or ray that is
able to cut off the Farkas vector (π, ρ) from our dual problem.

When implementing a column generation algorithm, one can usually rely on the
dual values as well as an appropriate Farkas’ vector being provided by the linear
programming solver.

Blockdiagonal subproblem

It is very common to look for subproblems which have block diagonal structure.
This provides two main advantages. First the blocks can be solved completely inde-
pendent which means that we can solve many small problems instead of one large

3.2 dantzig-wolfe decomposition 45

one. Especially when the subproblems are NP-hard (see Section 3.3) a reduction
in problem size is expected to provide a huge advantage in terms of algorithm
runtime. The second advantage is the fact that the extreme points and rays of
the subproblem can be split into smaller components. This way the master prob-
lem “can choose on its own” how to combine the partial extreme points and rays
which may lead to fewer calls of the subproblem.

If D has a block diagonal structure and is split into k blocks the original problem
will be of the form:

max
{

∑
i∈[k]

ciᵀxi : (∑
i∈[k]

Aixi ≤ b) ∧ (∀i ∈ [k], Dixi ≤ di) ∧ (xi ∈ Xi)

}
.

Every xi now has its own subproblem Hi
sub = {x : (Dix ≤ di) ∧ (x ∈ Xi)} which

defines the feasibility for the subproblem constraints. Therefore in the decomposi-
tion we do not need to consider the extreme points from the overall subproblem
Hsub = H1

sub × H2
sub × . . . × Hk

sub but we can look at the smaller polytopes sepa-
rately. Let Pi and Ri be the respective sets of extreme points and rays for Hi

sub.
Then our master problem becomes

max ∑
i∈[k]

(∑
p∈Pi

(ciᵀp)λi
p + ∑

r∈Ri

(ciᵀr)µi
r)

s.t ∑
i∈[k]

(∑
p∈Pi

(Ai p)λi
p + ∑

r∈Ri

(Air)µi
r) ≤ b

∑
p∈Pi

λi
p = 1 ∀i ∈ [k]

(λ, µ) ∈ R
∑i∈[k](|Pi |+|Ri |)
+ .

(3.9)

Again, due to the potentially large number of variables this model is often solved
using column generation. As before we start with a restricted master problem
which is again equivalent to (3.9) but with subsets P̄i ⊆ Pi and R̄i ⊆ Ri of the
extreme points and rays. The subproblem can again be determined by looking at
the dual of the master problem

min bᵀπ + ∑
i∈[k]

ρi

s.t (Ai p)ᵀπ + ρi ≥ cᵀi p ∀i ∈ [k], ∀p ∈ Pi (3.10)

(Air)ᵀπ ≥ cᵀi r ∀i ∈ [k], ∀r ∈ Ri (3.11)

(π, ρ) ∈ R
m2
+ ×Rk.

This means for each i ∈ [k] we need to solve the subproblem

max {(cᵀi − πᵀAi)x : x ∈ Hi
sub}. (3.12)

And again infeasibility of any one of (3.12) leads to infeasiblity of the master
problem. For an unbounded subproblem we can add an extreme ray and otherwise
we add an extreme point if the subproblems objective value exceeds ρi. Also the
modifications for Farkas pricing apply as before. Note that we only know that the

46 decomposition methods

master problem has found an optimal solution if we cannot find any extreme ray
or point for any of the subproblems.

Also note that, if we did not divide the subproblem, any combination of the
extreme points and rays from Hi

sub leads to a new extreme point or ray from Hsub.
Therefore exploiting the block diagonal structure of the subproblem is not only
beneficial to the execution time of the subproblem but also reduces the number
of variables in the master problem. Also the master problem can now choose the
combination of extreme points and rays on its own and might therefore need less
calls to the subproblem.

Another interesting case arises when the blocks are identical or almost identi-
cal (ci = cj, Ai = Aj, and possibly Di = Dj, di = dj for i 6= j). Then a technique
called aggregation and its extension, the heterogeneous aggregation, can be ap-
plied. These topics will be covered in detail in Chapter 5.

dantzig-wolfe decomposition for milp

This section considers the case where some of the variables need to be integral,
i. e., X = R

n1
+ ×Z

n2
+ . Incorporating the integrality in the subproblem is – from a

theoretical perspective – relatively simple, as we need to restrict the subproblems
feasible region to only the allowed points:

Hsub = {x : (Dx ≤ d) ∧ (x ∈ X)}.

Over this region we now need to solve the subproblem max {(cᵀ − πᵀA)x : x ∈
Hsub} to get the extreme points and rays to add to the master problem. As long
as we are able to solve the subproblem optimally, it does not matter that we do
not have a polyhedral description of Hsub, as we can reach any desired extreme
point or ray. One can solve this subproblem to optimality using some MILP solver,
but doing so might be less performant than using a combinatorial algorithm that
is specialized for the structure exhibited by Hsub. The existence of a good special
purpose solver for some part of the original problem might actually be one of the
main reasons to employ Dantzig-Wolfe decomposition.

While it is comparatively simple to get the integral extreme points and rays from
the subproblem, it is much more complicated to ensure that the master problem
only combines them in a way such that the overall solution is again integral. A
solution of the master problem is denoted as integral if the corresponding original
solution is integral. Note that this does not necessarily require the master problem
variables to be in Z. Consequently, when stating master problem formulations in
the remaining parts of this thesis, the integrality constraints will not be explicitly
stated. Instead the required integrality constraints are given for the original formu-
lation.

When the solution of the master problem is not integral, one way to proceed is
using a branch & bound procedure to exclude some fractional part of the solution.
In the context of column generation, such algorithms are often denoted as branch
& price. What makes the implementation of such a method challenging is the
proper choice of the branching decisions to be made in each node of the search
tree. Directly applying the methodology from classical branch & bound would
mean to choose some fractional variable λ∗p or µ∗r and then branch based upon the
variable bounds λp ≤ bλ∗pc and λp ≥ dλ∗pe (or equivalently for µ∗r). So far such a

3.3 dantzig-wolfe decomposition for milp 47

branching rule might not be feasible, as it could cut off an integral solution that is
only represented by fractional master variables. To circumvent this issue one can
employ discretization.

Discretization

So far it holds that for each integral original solution there exists a corresponding
master solution and each master solution with integer variables will correspond
to an integral original solution. What is missing is an assertion that an optimal
integral original solution will correspond to a master solution with only integer
variables, as an integral solution may lie inside of the subproblem polyhedron’s
convex hull and not be one of its extreme points.

A technique to circumvent this is to also add master variables for the subprob-
lems interior integral solutions. Therefore, instead of the set P of all subproblem
extreme points, one needs the set F, which shall contain all integral solutions of
the subproblem. Note that, in the case of an unbounded or a mixed integer prob-
lem, F may not be finite. In order to avoid the complexities associated herewith
(even though it is possible to use discretization in a generic MILP setting [161]), it is
required for the remainder of this thesis that whenever the set F is required, only
subproblems are used which ensure that F is finite.

Now in the master problem the new set F can be used instead of P, potentially
increasing the number of variables but not changing the master problem’s struc-
ture. Using F will be called discretization, while using only the extreme points P
is called the convexification approach. When the problem variables have a binary
domain the two approaches become equivalent, as no feasible integer points can be
between two extreme points. Luckily many practical problems have this structure.
This thesis will generally stick with the extreme point formulation whenever possi-
ble and only use discretization explicitly when it is necessary for the technique that
is being explained. Note also that the set F does not only contain extreme points.
As the majority of this thesis is based upon convexification, the term “extreme
point” will also be used in cases where discretization is applicable.

With discretization one can be assured that any optimal solution of the original
problem will correspond to a master problem solution where all variables take
integer values. In theory this enables us to use a classical branching rule upon the
master problem variables. It also helps with other, more complicated branching
rules, as explained in Chapter 5.

Note that it may be more difficult to find interior integral points of the sub-
problem, as this requires to add additional constraints to the problem, e. g., using
the branching decisions as hard constraints in the subproblem. This can destroy
the structure of the subproblem, rendering a previously used (fast) combinatorial
algorithm unsuited for the changed structure.

Branching

Branching directly on the master problem variables (when using discretization)
generally leads to a poorly balanced search tree. Assume that in the current so-
lution λ∗p = 0.5 but we require it to be binary. Then the λp ≥ dλ∗pe branch
will choose exactly this solution which is a very strong constraint. On the other

48 decomposition methods

hand the λp ≤ bλ∗pc branch needs to exclude this and only this solution. This is
usually a much weaker constraint. Furthermore it means that the subproblem in
this branch needs to also exclude this particular solution from being added again
(which would be a likely result when leaving the subproblem unchanged). This
can easily destroy the combinatorial structure the subproblem might have had be-
forehand, and thereby render the employed special purpose algorithm unusable.

One commonly used method to handle branching translates the solution of the
column generation method back into the space of the original variables: x∗ =

∑p∈P pλ∗p + ∑r∈R rµ∗r . Now one can add branching constraints on these variables
as one would have done without the Dantzig-Wolfe decomposition. I. e., we choose
one fractional variable x∗j where we want to enforce integrality and solve two new
problems for which we add the constraints

∑
p∈P

pjλ
∗
p + ∑

r∈R
rjµ
∗
r ≤ bx∗j c

or

∑
p∈P

pjλ
∗
p + ∑

r∈R
rjµ
∗
r ≥ dx∗j e

respectively. When solving the branches with these new constraints one now has
two options. One option is that the new constraints are placed in the master prob-
lem. Note that this will result in a new dual value. This dual value does not affect
the combinatorial structure of the subproblem as it will only be a constant factor
that needs to be added to the subproblems objective. The other possibility is to add
the new constraints to the subproblem. In this case one gets a potentially stronger
bound but as mentioned before such changes in the subproblem can destroy its
combinatorial structure. Therefore the strategy of choice highly depends on the
problem at hand.

benders’ decomposition

While the Dantzig-Wolfe decomposition was dealing with a set of complicating
constraints, the goal of the Benders’ decomposition is to help with a set of compli-
cating variables. Assume that we are given the following generic problem:

max{cᵀx + dᵀy : (Ax + Dy ≤ b) ∧ ((x, y) ∈ X×Y)}. (3.13)

Here the x variables are in some way complicating. This means that if we assume
to be given some fixed values x, the problem

α(x) = max{dᵀy : (Dy ≤ b− Ax) ∧ (y ∈ Y)} (3.14)

can be solved easily. Problem (3.14) is the subproblem of the Benders’ formulation
which we will need to solve repeatedly in order to find an optimum for the overall
problem (3.13). The overall procedure will be to first choose x, then solve (3.14)
and see if we need to adjust our choice of x.

As before we first look at the case where X = R
n1
+ and Y = R

n2
+ , and extend this

to the MILP setting in Section 3.5.
The choice of x has two aspects. We need to choose it such that it is still possible

to find y such that Ax + Dy ≤ b, i. e., x has to be feasible. Furthermore x shall be

3.4 benders’ decomposition 49

chosen among all feasible possibilities such that cᵀx + α(x) is maximized, i. e., x
shall be optimal. In order for x to be feasible it has to be in the set

Pfeasible = {x : (x ∈ R
n1
+) ∧ (∃y ∈ R

n2
+ , Ax + Dy ≤ b)}.

We can obtain a different description of Pfeasible using the Farkas’ Lemma (Lemma
1.12) in the following way: observe that for a given x there exists y satisfying
Dy ≤ b− Ax iff (Dᵀr ≥ 0) ∧ (r ≥ 0)⇒ (b− Ax)ᵀr ≥ 0. Now let R be the set of all
extreme rays of the cone C = {r : (Dᵀr ≥ 0) ∧ (r ≥ 0)}

We now need to ensure that

∀r ∈ R, (b− Ax)ᵀr ≥ 0

because this implies for r̃ ∈ C where r̃ = ∑r∈R µrr, µ ≥ 0 (by Theorem 1.4) that

(b− Ax)ᵀr̃ = ∑
r∈R

(b− Ax)ᵀµrr ≥ 0.

This in turn means that x ∈ Pfeasible can be replaced by the following set of linear
inequalities:

∀r ∈ R, (rᵀA)x ≤ bᵀr.

Next we need to make sure that we also choose x optimally. First note that if
α(x) is unbounded so is (3.13). As we have just taken care of feasibility we can
now assume that α(x) has a bounded optimum. Observe that the objective of (3.13)
can be restated as maximizing cᵀx + α(x). As α(x) is a linear program we can as
well look at its dual

α(x) = min{(b− Ax)ᵀp : (Dᵀp ≥ d) ∧ (p ≥ 0)}.

Now let P be the set of all extreme points of {p : (Dᵀp ≥ d) ∧ (p ≥ 0)}. As α(x)
calculates a minimum over this polyhedron we know

∀p ∈ P, α(x) ≤ (b− Ax)ᵀp

and as the minimum is attained in at least one of the extreme points (by Theorem
1.11), these linear inequalities are also sufficient to characterize α(x). Putting all
this together we can now express (3.13) only in terms of the x variables, the new
inequalities we just derived and an additional variable α containing the objective
value from the subproblem:

max cᵀx + α

s.t. (rᵀA)x ≤ bᵀr ∀r ∈ R

(pᵀA)x + α ≤ bᵀp ∀p ∈ P

x ≥ 0.

(3.15)

Again the number of extreme points P and rays R may be too large to be handled
explicitly by an LP solver. Instead the method of choice usually is to leave out those
constraints and to generate them on demand as we did with the variables for the
Dantzig-Wolfe decomposition. Again we assume that we have (potentially empty)

50 decomposition methods

subsets of the extreme points and rays P̄ ⊆ P and R̄ ⊆ R for which we have solved
the restricted master problem

max cᵀx + α

s.t. (rᵀA)x ≤ bᵀr ∀r ∈ R̄

(pᵀA)x + α ≤ bᵀp ∀p ∈ P̄

x ∈ R
n1
+

(3.16)

with (x∗, α∗) being an optimal solution for this LP. Note that (3.16) might be un-
bounded (which will always be the case if P̄ = ∅ due to no bound on α). Therefore
it might be advisable to add an artificial upper bound for the parameter α in prac-
tice. For many practical problems finding such an upper bound is possible given
the knowledge of the specifics of the problem. The next step is to solve the sub-
problem (3.14) for x∗, i. e., solving:

α(x∗) = max{dᵀy : (Dy ≤ b− Ax∗) ∧ (y ∈ Y)}.

We now need to consider the following cases:

1. α(x∗) is unbounded. As x∗ was feasible for the subproblem the master prob-
lem must also be unbounded.

2. α(x∗) is infeasible. In this case we can derive r ∈ R \ R̄ with (rᵀA)x∗ > bᵀr
using the Farkas’ Lemma as explained above. We add r to the set R̄ and solve
(3.16) again.

3. α(x∗) < α∗. In this case there exists a p ∈ P \ P̄ such that pT Ax∗ + α > bᵀp
using the dual formulation of (3.14). We add p to P̄ and solve (3.16) again.

4. α(x∗) = α∗. As x∗ is feasible and there is no gap between α∗ and α(x∗) we
found an optimal solution.

The Benders’ decomposition algorithm can be seen as a dual to the Dantzig-
Wolfe decomposition described earlier in this chapter. While for Dantzig-Wolfe it
was necessary to add variables to the master problem, which were based upon the
extreme points and rays of the subproblem, in Benders’ decomposition one adds
constraints to the master problem that are based upon the extreme points and rays
of the subproblem’s dual formulation.

Zero rows in the subproblem

It can easily happen that an entire row of D contains only zeros. In this case it is
advisable to make a few modifications to the cutting plane algorithm stated above.
So assume our original formulation is

max{cᵀx + dᵀy : (

(
A1

A2

)
x +

(
0

D

)
y ≤

(
b1

b2

)
) ∧ ((x, y) ∈ X×Y)}

then in the subproblem we look for extreme rays from

{
(

r1

r2

)
:

(
0

D

)ᵀ(
r1

r2

)
≥ 0}

3.5 benders’ decomposition for milp 51

and for extreme points in

{
(

e1

e2

)
:

(
0

D

)ᵀ(
e1

e2

)
≥ d}.

The first thing to notice is that the first component r1 or e1 does not make any
difference for the feasibility of a ray or point. Therefore in the separation routine
we might end up generating a lot of rays or points that only differ in the r1 or e1

component. This can be avoided as follows: first we need to make sure that the
r1 or e1 components can be safely discarded in the subproblem by modifying the
restricted master problem to

max cᵀx + α

s.t. A1x ≤ b1

(rᵀ2 A2)x ≤ bᵀ2 r2 ∀r2 ∈ R̄2

(pT
2 A2)x + α ≤ bᵀ2 p2 ∀p2 ∈ P̄2

x ∈ X.

(3.17)

This ensures that for each (r1, r2)ᵀ with r2 ∈ R̄2 the inequality rᵀ1 A1x + rᵀ2 A2x ≤
bᵀ1 r1 + bᵀ2 r2 is fulfilled as A1x ≤ b1 implies rᵀ1 A1x ≤ bᵀ1 r1.

The sets R̄2 and P̄2 contain the new extreme points and rays for the modified
restricted master problem. The new cone to look for missing extreme rays is R̄2 is
now given as

{r2 : (Dᵀr2 ≥ 0) ∧ (r2 ≥ 0)}

such that rᵀ2 A2x∗ > bᵀ2 r2. The vectors that need to be added to P̄2 are similarly the
extreme points of

{p2 : (Dᵀp2 ≥ d) ∧ (p2 ≥ 0)}

where pᵀ2 A2x∗ + α > bᵀ2 r2. Now the subproblem only handles the constraints that
actually include some of the subproblem variables.

benders’ decomposition for milp

Similar to Section 3.3 we will now extend the Benders’ decomposition to mixed
integer programs. Not every mixed integer program can efficiently be tackled by
these approaches. But for certain structures they prove to be very effective.

Mixed integer master problem

In the case where the domain of variables for (3.13) imposes integrality restrictions
only for some of the variables in the master problem but not in the subproblem, i. e.,
X = Z

n1,1
+ ×R

n1,2
+ and Y = R

n2
+ , nothing needs to be done to adjust the procedure.

As the subproblem is still a linear program, the reformulation using the duality
theory from linear programming still applies. Therefore the only necessary change
is to impose the integrality in the master problem (3.15) or the restricted master
problem (3.16) respectively.

52 decomposition methods

Solving MILPs of this form was the original goal of Benders’ formulation as
described by Benders (1962) [24]. Note that the bound of the LP relaxation in the
MP will not be strengthened by this reformulation. But in some applications the
size of the problem can be significantly reduced and thereby increase the solver
performance. An example for such an application is explained in Chapter 4.

Binary master and mixed integer subproblem

When the subproblem is a mixed integer problem, it becomes more complex to
properly relate the subproblem results back to the master problem. As there is
no strong duality for the subproblem, blindly using the feasibility and optimality
cuts from Section 3.4 is unlikely to produce the desired results. For example the
subproblem might be infeasible over the integer domain, but its LP relaxation can
be non empty. In this case one cannot simply produce a ray r to cut off the current
master problem solution in the style of Farkas’ Lemma. Similarly the optimality
cuts might not be sufficiently tight and allow for α to take larger values than those
of the corresponding subproblem.

Nevertheless it is possible to use a modified version of the basic concepts be-
hind the Benders’ decomposition. In the original version, we use duality theory
in order to provide a proof that, e. g., a certain point cannot be feasible for the
subproblem. This proof is then turned into a constraint for the master problem.
While duality theory does not provide such proofs for combinatorial subproblems
in general, there often exist other ways, to arrive at similar results. This concept
was used by Hooker and Osorio (1999) [93] for various problems and then later
generalized by Hooker and Ottosson (2003) [94] into a more general framework, de-
noted “logic-based Benders’ decomposition”. This was again improved upon and
further generalized by Codato and Fischetti (2006) [47] which denoted their method
as “combinatorial Benders’ cuts”.

The most generic variant of these methods considered in this thesis has the form
of (3.13) and assumes the domain of the master problem to be binary and that of
the subproblem to be mixed integral, i. e., X = {0, 1}n1 and Y = Z

n2,1
+ ×R

n2,2
+ . The

most generic (but also naïve) approach works as follows:

1. Start with the restricted master problem (rMP) max{cᵀx + α : x ∈ X}

2. Solve the rMP up to an optimal solution (x∗, α∗)

3. Solve the subproblem α(x∗) = max{dᵀy : (Dy ≤ b− Ax∗) ∧ (y ∈ Y)}
a) If the subproblem is infeasible, add the cut

∑
i:x∗i =0

xi + ∑
i:x∗i =1

(1− xi) ≥ 1

to exclude exactly the current solution [47]. Go back to step 2 with the
new rMP.

b) If the subproblem is feasible and α(x∗) < α∗, add the cut

α ≤ α(x∗) + (M− α(x∗))(∑
i:x∗i =0

xi + ∑
i:x∗i =1

(1− xi)))

3.5 benders’ decomposition for milp 53

where M is an upper bound on α(x). In this way, a bound for the objec-
tive is introduced in exactly the current master problem solution [97]. Go
back to step 2 with the new rMP.

c) If the subproblem is feasible and α(x∗) = α∗ an optimal solution was
found.

This general approach will likely not produce acceptable performance in prac-
tice, as each subproblem can only generate cuts that apply to exactly the current
rMP solution and nowhere else. Depending on the problem structure, this method
can be improved and result in an efficient algorithm.

In order to strengthen the cuts one can lookout for subsets of the variables that
will result in an infeasible subproblem no matter what configuration is chosen for
the rest.

Definition 3.1. A rMP solution x̂ and a subset Ī ⊆ [n1] of the rMP variable indices
defines an infeasible subsystem (IS) if

{y : (Dy ≤ b− A Ī x̂ Ī) ∧ (y ∈ Y)} = ∅.

An infeasible subsystem is called minimal (MIS) if no Ī′ ⊂ Ī is an IS.

Given an IS x̂ and Ī, it is possible to use the following stronger feasibility cut [47]:

∑
i∈ Ī

x̂i=0

xi + ∑
i∈ Ī

x̂i=1

(1− xi) ≥ 1.

Given two index sets Ī1 and Ī2 both defining an infeasible subsystem but with
Ī1 ⊂ Ī2. Then obviously the feasibility cut for Ī1 will dominate that for Ī2 as it can
only separate more points. Therefore it is desirable to find a small IS, ideally an
MIS.

Finding the MIS of minimum size is NP-complete for general IPs, hard to approx-
imate and even NP-hard when D is totally unimodular and b− Ax̂ is integral [13].
Therefore searching for the smallest MIS in order to obtain a very strong feasibil-
ity cut is discouraged. In Codato and Fischetti (2006) [47] a method to quickly find
some MIS is described.

A noteworthy special case are problems where x̂ infeasible implies that x̂′ with
x̂′ ≥ x̂ is infeasible. Such a case will be investigated in Section 4.2. In these situa-
tions indices i with x̂i = 0 can always be dropped from an IS without destroying
the infeasibility.

Theorem 3.2. Given that for the subproblem x̂ infeasible implies x̂′ with x̂′ ≥ x̂ infeasible.
Then for any IS (x̂, Ī), the subset Ī′ = {i ∈ Ī : x̂i = 1} also defines an IS (x̂, Ī′).

Proof. Assume that Ī′ does not define an IS, i. e., there exists x∗ such that x∗Ī′ = x̂ Ī′

but which is not infeasible for the subproblem. Let

J := {i : x∗i < x̂i}.

J 6= ∅ as the feasibility of x∗ implies x̂ 6≤ x∗. Furthermore J ∩ Ī 6= ∅ because x̃,
with

x̃i =

x̂i if i ∈ Ī

0 otherwise

54 decomposition methods

must lead to an infeasible subproblem and x̃ ≤ x∗.
But on the one hand J ∩ (Ī \ Ī′) = ∅ as x̂ Ī\ Ī′ = 0 by definition of Ī′. On the

other hand J ∩ Ī′ = ∅ as x∗Ī′ = x̂ Ī′ , which concludes the proof by contradiction to
J ∩ Ī′ 6= ∅.

From Theorem 3.2 quickly follows that with the given preconditions on the sub-
problem structure, it suffices to use feasibility cuts of the form

∑
i∈ Ī

xi ≤ | Ī| − 1

for certain infeasible subsystems Ī ⊆ [n1].

4
M AT C H I N G A S S U B P R O B L E M F O R B E N D E R S ’
D E C O M P O S I T I O N

This chapter will explore cases where a problem can be decomposed using Benders’
decomposition (see Chapter 3) such that the subproblem turns out to be some kind
of matching (see Chapter 2). Such structures appear for example in timetabling
applications as shown later in Chapter 6.

It will be shown that if the subproblem is a classical bipartite matching, the Ben-
ders’ decomposition is strongly related to the separation algorithm of the partial
transversal polytope. It extends the separation of the partial transversal polytope
in the sense that also weighted matchings can be incorporated. The presentation
will start with some original formulation which is solved with the cutting plane
approach we already know from Section 2.4. In the second part of the chapter
this methodology will be further extended to also deal with bipartite hypergraph
matchings as subproblems.

bipartite matching as subproblem

In this section we will look at problems where part of the problem is to choose a
partial transversal. As partial transversals are representatives for bipartite match-
ings (see Section 2.4), assume that for our problem there exists some bipartite
graph G = (U ∪ V, E), and, when formulating the problem as an MILP, we will
have a variable for each of the incidence vectors for the vertices U: xt ∈ {0, 1}|U|.
Other variables that are necessary for the non-matching part of the problem are
denoted by xo ∈ X (with X being some mixed integer domain). In order to en-
sure that xt is actually encoding a partial transversal, we need some variables to
determine if there is a matching from the chosen vertices in U to the vertices in V.
These will be denoted as y ∈ {0, 1}|E|. The y variables will determine the edges of
a matching in G. The generic MILP we will be looking at now has the form

max

(
c1

c2

)ᵀ(
xo

xt

)
− wᵀy

s.t

 Ā

0 I

0 0


(

xo

xt

)
+

 0

D1

D2

 y ≤

 b̄

0

1


xo ∈ X, xt ∈ {0, 1}|U|, y ∈ {0, 1}|E|.

(4.1)

This MILP has n1 = dim(X) + |U| variables x = (xo, xt)ᵀ that will later be part
of the master problem, and |E| variables y which will be placed in the subproblem.
The formulation consists of m = m1 + |U|+ |V| constraints which are split up as
follows: Ā ∈ Qm1×n1 and b̄ ∈ Qm1 define additional constraints of the problem
unrelated to the partial transversal part (but possibly including the xt variables).

55

56 matching as subproblem for benders’ decomposition

The remaining rows define the matching substructure. The matrix I is the |U| × |U|
dimensional identity matrix such that we get the two sets of constraints

Ixt + D1y ≤ 0 (4.2)

and

D2y ≤ 1. (4.3)

The matrix D1 ∈ {−1, 0}|U|×|E| consists of entries d1
u,e where

d1
u,e =

−1 if u ∈ e

0 otherwise.

Constraints (4.2) can therefore be restated in the form

∀u ∈ U, xt
u −∑

e3u
ye ≤ 0

and ensure that for every vertex u ∈ U, where xt
u = 1, there has to be an edge e

connected with u such ye = 1. If there exists an edge e with we < 0, it might be
necessary to require equality in these constraints, to prevent that more edges are
chosen than required. This will not be the case if w ≥ 0 which will be the setting
assumed from now onwards. In case equality is required one can easily change
the model appropriately, but note that one can usually shift the weights such that
their values become non negative by adding a constant term to all weights. En-
suring w ≥ 0 basically means that the subproblem will be a minimum weight
maximum matching problem (even though stated in form of a maximization prob-
lem to remain in line with the established notation) and will therefore be referred
to as such.

Matrix D2 ∈ {0, 1}|V|×|E| consists of entries d2
v,e where

d2
v,e =

1 if v ∈ e

0 otherwise

leading to constraints of the form

∀v ∈ V, ∑
e3v

ye ≤ 1.

These constraints ensure that for every vertex v ∈ V there is at most one connected
edge chosen by y.

The y variables encode a matching problem which is easy to solve if solved
independently from the rest of the problem. They are therefore a canonical choice
for the subproblem variables in a Benders’ decomposition. Following the standard
approach (see Section 3.4) we get the following cutting plane algorithm:

1. Solve the MILP

max{
(

c1

c2

)ᵀ(
xo

xt

)
+ α : (Ā

(
xo

xt

)
≤ b̄)

∧ (xo ∈ X) ∧ (xt ∈ {0, 1}|U|)}.

(4.4)

4.1 bipartite matching as subproblem 57

a

b

c

d

e

2

3

1

3

Figure 8: The bipartite matching graph G = (U ∪ V, E) from Example 4.1 with its edge
weights

2. Let (xo∗, xt∗, α∗)ᵀ be an optimal solution for (4.4). Now solve

α((xo∗, xt∗)ᵀ) =

max{−wᵀy :

(
D1

D2

)
y ≤

(
−Ixt∗

1

)
}.

(4.5)

3. If (4.5) is infeasible, let r = (r1, r2)ᵀ be a Farkas vector proving the infeasi-
bility. Otherwise let e = (e1, e2)ᵀ be an optimal dual solution for (4.5). If the
subproblem is feasible and α((xo∗, xt∗)ᵀ) = α∗, the algorithm terminates. In
case of an infeasible subproblem, we add the constraint

r1ᵀxt ≤ 1ᵀr2

for the dual extreme ray r. In case of a feasible subproblem with objective
value greater than α∗, we retrieve the corresponding dual extreme point p
and add the constraint

p1ᵀxt + α ≤ 1ᵀp2

to the master problem (4.4). Then go back to step 1 and calculate an optimum
of the revised master problem.

As we assumed that w ≥ 0, the subproblem will always result in non positive
objective values. This implies that one can always impose the upper bound α ≤ 0
in the master problem, thereby avoiding unboundedness. If there are w 6≥ 0 the
master problem may become unbounded.

The Benders’ algorithm is closely related to the separation routine for the partial
transversal polytope from Section 2.4, as in both cases matchability for an inci-
dence vector shall be ensured. But unlike the routine in Section 2.4, the Benders’
algorithm can also incorporate a weighted matching as a subproblem. Later some
improvements for this algorithm are be developed which aim at combining the
best traits from both worlds. But first the Benders’ algorithm shall be illustrated by
an example.

Example 4.1 (Matching with weak conflicts). This example will walk through the
iterations of the Benders’ procedure for a problem with a matching substructure.
The setting is as follows. We are given a bipartite graph G = (U ∪V, E) where we
may choose which elements from U = {a, b, c} we want to use (each giving us a

58 matching as subproblem for benders’ decomposition

value of 5). Each chosen vertex has to be matched to one of the vertices V = {d, e}.
The matching generates some cost that is dependent on the connected vertices.
Figure 8 shows G and the associated costs.

In addition to the cost from the matching, we penalize the parallel use of vertices
a and c with a cost of 3. This problem can be formulated as an IP in the following
way:

max − 3x′ + 5xa + 5xb + 5xc − 2yad − 3ybd − ycd − 3yce

s.t xa + xc − x′ ≤ 1

xa − yad ≤ 0

xb − ybd ≤ 0

xc − ycd − yce ≤ 0

yad + ybd + ycd ≤ 1

yce ≤ 1

x′ ∈ {0, 1}, x ∈ {0, 1}3, y ∈ {0, 1}4.

In this IP xa, xb, xc encode whether the respective vertex is used or not, x′ encodes
if we have to pay the penalty for using vertices a and c together. The y variables
encode the matching between the chosen U and the V vertices. The optimal solu-
tion for this problem sets variables xc and ycd to 1, leaves all others at 0, and has
an objective value of 4.

Applying the Benders’ Decomposition in the manner described before leads us
to the following master problem, based on the x variables:

max − 3x′ + 5xa + 5xb + 5xc + α

s.t xa + xc − x′ ≤ 1

α ≤ 0

x′ ∈ {0, 1}, x ∈ {0, 1}3, α ∈ R.

(4.6)

Note that we can set an upper bound of 0 for α as the matching subproblem can
only result in negative objective values due to the convention that w ≥ 0. This way
we can avoid issues arising from an unbounded α. An optimal solution for (4.6)
is (x′∗, x∗a , x∗b , x∗c , α∗)ᵀ = (1, 1, 1, 1, 0)ᵀ with an objective value of 12. Using this we
arrive at the following subproblem:

max − 2yad − 3ybd − ycd − 3yce

s.t − yad ≤ − 1

− ybd ≤ − 1

− ycd − yce ≤ − 1

yad + ybd + ycd ≤ 1

yce ≤ 1

y ∈ R4
+.

4.1 bipartite matching as subproblem 59

This subproblem is infeasible which can be proven using the dual ray r =

(1, 1, 0, 1, 0)ᵀ ≥ 0 fulfilling the conditions from the Farkas Lemma (see Lemma
1.12):


−1 0 0 1 0

0 −1 0 1 0

0 0 −1 1 0

0 0 −1 0 1

 r =


0

0

1

0

 ≥ 0,



−1

−1

−1

1

1



ᵀ

r = −1 < 0.

Using r we add a new constraint to the master problem (4.6):

xa + xb ≤ 1.

Note that this constraint is the partial transversal polytope facet x(Ū) ≤ |N(Ū)|
from Theorem 2.10 for the subset Ū = {a, b}. The last solution of the master prob-
lem is now infeasible with respect to the new constraint and a new solution of the
rMP is

(x′∗, x∗a , x∗b , x∗c , α∗)ᵀ = (0, 0, 1, 1, 0)ᵀ

which has an objective value of 10.
For this solution the subproblem is

max − 2yad − 3ybd − ycd − 3yce

s.t − yad ≤ 0

− ybd ≤ − 1

− ycd − yce ≤ − 1

yad + ybd + ycd ≤ 1

yce ≤ 1

y ∈ R4
+

which is now feasible with an optimal solution

(y∗ad, y∗bd, y∗cd, y∗ce)
ᵀ = (0, 1, 0, 1)ᵀ

and dual solution p = (0, 5, 3, 2, 0)ᵀ. The objective value is −6 which is less than
the current value of α∗ = 0. Therefore we add the constraint

5xb + 3xc + α ≤ 2

to the master problem and resolve it again. An updated solution is

(x′∗, x∗a , x∗b , x∗c , α∗)ᵀ = (1, 1, 0, 1,−1)ᵀ

with an objective value of 6. Solving the corresponding subproblem results in the
dual solution p = (4, 0, 3, 2, 0) with the objective value of −5 leading to the follow-
ing cut for the master problem:

4xa + 3xc + α ≤ 2.

60 matching as subproblem for benders’ decomposition

Resolving leads to the solution

(x′∗, x∗a , x∗b , x∗c , α∗)ᵀ = (0, 0, 0, 1,−1)ᵀ

with the objective value of 4. This time the subproblem has an objective value of
−1 = α∗ which means that we can stop at this point as we have found an optimal
solution.

Improved cuts

In Section 2.4 we have seen a separation routine for the partial transversal polytope
which will generate cuts similar to the Benders’ feasibility cuts. These cuts do not
need to be facets of the partial transversal polytope and neither do the Benders’
feasibility cuts. This will lead to slow convergence due to bad quality of the cuts.
Therefore it is desirable to have a way to improve these cuts. Such an algorithm is
presented now, based on the separation algorithm from Section 2.4. This will then
be carried over to the Benders’ optimality cuts, resulting in an improved version
of the original Benders’ method.

The basic ingredient for the improved cuts will be an algorithm, denoted as RISS
(reachable infeasible subsystem search), which will improve the cuts at hand with
little computational effort. Given a master solution (x̂o, x̂t). Let M̂ be a matching
covering a maximum number of vertices u for which xt

u = 1. For an infeasible
subproblem, this matching will not cover all of these vertices u. Now RISS works
as follows:

1. Construct a directed bipartite auxiliary graph G′ = (Û ∪V, E′). The set Û =

{u : xt
u = 1} is the partial transversal indicated by xt. The edges are defined

by the matching M̂ as follows

a) ∀m ∈ M̂, ∀u ∈ m ∩U, ∀v ∈ m ∩V, let (v, u) ∈ E′

b) ∀m ∈ E \ M̂, ∀u ∈ m ∩U, ∀v ∈ m ∩V, let (u, v) ∈ E′

c) ∀u ∈ Û,@e ∈ M̂, u ∈ e, ∀v ∈ N(u) let (v, u) ∈ E′

2. Let W = {u ∈ Û : @e ∈ M̂, u ∈ e} be the set of vertices chosen in the master
problem that were not covered by M̂.

3. For some u ∈W find the set R(u) of vertices reachable from u in G′ (see also
Section 1.3)

4. Return the cut x(R(u) ∩ U) ≤ |R(u) ∩ {u′ ∈ Û : ∃e ∈ M̂, u′ ∈ e}| =
ν(R(u) ∩U).

Note that R(u) can be calculated quickly by traversing the graph and marking
the vertices accordingly (see Section 1.3) with a runtime complexity of O(|E| +
|Û|+ |V|). For W ′ = {u ∈ Û : @e ∈ M̂, u ∈ e} being the set of initially unmatched
vertices, the reachable vertex set needs to be calculated at most once per vertex,
leading to a runtime complexity of O(|W ′| · (|E|+ |Û|+ |V|)).

The basic intuition behind RISS is to start with the neighbors of an uncovered
vertex, check by which edges from M̂ they are “blocked”, see why the correspond-
ing U vertices are not assigned to some other edge, and so forth. Figure 9 shows
an example for the RISS algorithm, based upon the example from 4.1. Note that in

4.1 bipartite matching as subproblem 61

a

b

c

d

e

(a) The original graph from Example 4.1
with a highlighted (red) maximum
matching M̂ and the unmatched
node b

a

b

c

d

e

(b) The auxiliary graph G′ derived from
M̂

a

b

c

d

e

(c) The nodes reachable from b in G′

Figure 9: An example for the RISS algorithm

this case the RISS algorithm computes a vertex set that translates to the same cut
as the one produced by the Farkas’ vector in the example.

In order to prove that RISS does indeed always yield a valid cut, it is necessary to
show that the calculated ν(R(u)∩U) values are correct. Given that they are correct,
one can easily see that ν(R(u)∩U) < |R(u)∩U| and therefore the generated cuts
will actually separate the current master solution, asR(u)∩ {u′ ∈ Û : ∃e ∈ M̂, u′ ∈
e} will exclude at least the unmatched vertex u and therefore be at least by one
element smaller than R(u) ∩U.

Theorem 4.2. Given some set R(u) ∩U as found in the RISS algorithm. Let

ξ(R(u) ∩U) := |R(u) ∩ {u′ ∈ Û : ∃e ∈ M̂, u′ ∈ e}|

then ν(R(u) ∩U) = ξ(R(u) ∩U).

Proof. As the matching M̂ already covers ξ(R(u) ∩U) vertices from R(u) ∩U we
immediately get ν(R(u) ∩U) ≥ ξ(R(u) ∩U).

Now assume that ν(R(u) ∩U) > ξ(R(u) ∩U). In this case there exists a match-
ing M̃ covering at least ξ(R(u) ∩U) + 1 vertices of R(u) ∩U. Now construct the
matching

M′ = M̃ ∪ {e ∈ M̂ : e ∩R(u) ∩U = ∅}

which uses M̃ on R(u) ∩U and M̂ otherwise.

62 matching as subproblem for benders’ decomposition

To see that M′ is feasible, consider an edge e1 ∈ M̃ covering some vertex from
R(u) and an edge e2 covered by M̂ with e2 ∩ R(u) ∩U = ∅. As e1 ∩ R(u) 6= ∅,
there exists a path from u to each vertex in e1 in the auxiliary graph G′. If e1 ∩ e2 6=
∅, then there would also be a path to the node e2 ∩ U which is prohibited as
e2 ∩R(u) ∩U = ∅.

By construction M′ covers more vertices of R(u)∩U than M̂ did, but covers the
same vertices outside of R(u) ∩U. Therefore |M′| > |M̂| which is a contradiction
to M̂ being a maximum matching.

The RISS algorithm can be seen as dividing the graph into components such that
the vertices of a component are not affected by vertices outside of the component.
A property of the resulting cuts is, that they are facets of the partial transversal
polytope. This can be shown by using Theorem 1.9 for the facets of a polymatroid,
as we only need to show that the returned subsets are ν-flat and ν-inseparable.
The reader may refer to Section 2.4 for further explanations about the facets of the
partial transversal polytope and its relation to polymatroids.

Theorem 4.3. Let Ĝ = (Û ∪ V, {e ∈ E, e ∩ Û 6= ∅}) be the graph restricted to the
vertices chosen in the master problem. If Ĝ is a bipartite graph, then the subsets returned
by RISS are ν-flat and ν-inseparable.

Proof. Let R(u) ∩ U be one of the subsets returned by RISS and let M̂′ = {e ∈
M̂ : e ∩ R(u) ∩ U 6= ∅}. Assume that R(u) ∩ U is not ν-flat, i. e., there exists
u′ ∈ Û \ R(u) with ν((R(u) ∩ U) ∪ {u′}) = ν(R(u) ∩ U). This implies that all
nodes NG(u′) must be already covered by M̂′. But then there must be a path in G′

from u to u′ contradicting u′ ∈ Û \ R(u).
Now assume that R(u) ∩ U is not ν-inseparable and let Ũ1, Ũ2 be a partition

of R(U) ∩U such that Ũ1 ∪ Ũ2 = R(u) ∩U, Ũ1 ∩ Ũ2 = ∅, and ν(R(u) ∩U) =

ν(Ũ1) + ν(Ũ2). W.l.o.g. let u ∈ Ũ1. Let M̂1 = {e ∈ M̂ : e∩ Ũ1 6= ∅} be the matching
restricted to Ũ1. By the properties of the partition we get that |M̂1| = ν(Ũ1). Next
let p be a path from u to some node in Ũ2 in the auxiliary graph G′ such that
only one node in Ũ2 is visited by that path. There may be several nodes from Ũ1

upon p which are unmatched by M̂′. From the last of these onwards p will be an
alternating path up to its last edge. If the last node of p is covered by M̂, then also
the last edge is alternating and M̂1 can be increased using this alternating path. In
this case ν(Ũ1) > |M̂1| which is a contradiction. If on the other hand the last node
of p is not matched in M̂, then M̂2 can be increased by the last edge of p which is
also a contradiction. Therefore R(u) ∩U must be ν-inseparable

Note that we are only guaranteed to get facets of the partial transversal polytope
if we initially had a maximum matching at hand. As the Farkas’ vector for the
minimum weight maximum matching problem does not need to translate into
proper ν values, using RISS here is not guaranteed to result in facets.

The next step will be to carry over these finding to the optimality cuts. One prob-
lem with the original Benders’ algorithm is that the subproblem cost is represented
by a single variable, which then needs to appear in each optimality cut, leaving no
leeway for improving the cut. Therefore the first necessary step is to replace α ap-
propriately by some vector α̂ ∈ R|U|, which will be encoding the subproblem cost

4.1 bipartite matching as subproblem 63

for each vertex in U (meaning that α̂ will also enter the objective with cost of 1
each). The restricted master problem before adding any constraints now becomes

max{
(

c1

c2

)ᵀ(
xo

xt

)
+ α̂(U) : (Ā

(
xo

xt

)
≤ b̄)

∧ (xo ∈ X) ∧ (xt ∈ {0, 1}|U|)}.

The original α can now be seen as an aggregated version of the new vector: α =

∑u∈U α̂u.
It will now be shown that there exists a collection of cuts which is feasible for

the Benders’ master problem. Such cut collections can be found using a simple
strategy similar to the RISS algorithm used for the feasibility cuts. Each of these
cuts will contain a subset of the original cuts variables. For some problems these
cuts turn out to vastly improve the performance of a Benders’ algorithm.

Theorem 4.4. Given some subset Ū ⊆ U and a dual extreme point p of a minimum cost
maximum matching problem covering at least all vertices from Ū. Then the cut

(∑
u∈Ū

puxt
u) + α̂(Ū) ≤ p(NG(Ū))

is valid for the Benders’ master problem.

Proof. First note that the minimum weight maximum matching problem imposes
some restrictions on the values that the p vector can take. The dual formulation of
(4.5) has the constraints(

D1

D2

)ᵀ

p ≥ −w

implying

∀{u, v} ∈ E, pu − w{u,v} ≤ pv.

In order for xt and α̂ to be valid, they have to represent a partial transversal and
the cost of a valid matching covering the partial transversal, i. e., there is some
matching M̂ covering all u for which xt = 1 and such that

∀{u, v} ∈ M̂, α̂u ≤ −w{u,v}.

Putting this together with the requirements for the dual extreme point p, we get

∀{u, v} ∈ M̂, pu + α̂u ≤ pv.

As {u, v} ∈ M̂ implies v ∈ NG(u) and as each u for which xt
u = 1 is covered by M̂,

it directly follows that the inequality

(∑
u∈Ū

puxt
u) + α̂(Ū) ≤ p(NG(Ū))

is valid.

64 matching as subproblem for benders’ decomposition

In order to find subsets that are guaranteed to actually separate the current
master solution and improve on the original Benders’ cut, connected components
on a subgraph of G will be used. The subgraph needed for this will be called
Ĝ = (Û ∪ V, Ê) and will be the subgraph of G restricted to the vertices Û which
are active in the current master solution xt, as well as the edges induced by this
selection of vertices. Now one can easily find the set of all connected components
C(Ĝ) within a time complexity of O(|V| + |E|) by traversing the graph, starting
from an unvisited vertex for each component (see Section 1.3).

Theorem 4.5. Let C(Ĝ) be the set of connected components in Ĝ, as defined previously.
Then

p1ᵀxt + 1ᵀα̂ > 1ᵀp2

implies

∃C ∈ C(Ĝ), (∑
u∈C∩U

puxt
u) + α̂(C ∩U) > p(NG(C ∩U))

Proof. The connected components form a complete partition of the vertices of sub-
graph Ĝ. Therefore

∀C ∈ C(Ĝ), (∑
u∈C∩U

puxt
u) + α̂(C ∩U) ≤ p(C ∩V)

implies by summing up all these inequalities that

(∑
u∈Û

puxt
u) + α̂(Û) ≤ p(V).

This constraint must be violated if p1ᵀxt + 1ᵀα̂ > 1ᵀp2 and therefore there exists
C ∈ C(Ĝ)such that (∑u∈C∩U puxt

u) + α̂(C ∩U) > p(C ∩V). As NG(C ∩U) = C ∩V
for any connected component C, the theorem follows.

Theorem 4.5 show that the original Benders’ cuts can be replaced by our new
optimality cuts which are derived from the connected components. Note that the
sets resulting from the search for connected components in the undirected auxil-
iary graph can be larger than the reachable sets that the RISS algorithm is looking
for. It turns out that the sets found by the RISS procedure are not sufficient for sep-
arating all relevant infeasible master solutions as demonstrated by the following
example.

Figure 10 shows a graph where the minimum weight maximum matching M̂ =

{{a, d}, {b, e}, {c, f }} has a total weight of 2. A corresponding dual solution is

(pa, pb, pc, pd, pe, p f) = (1, 1, 1, 0, 1, 0).

In this setting the RISS algorithm would return the following subsets of {a, b, c}:

Ū1 = {a, b}, Ū2 = {b}, Ū3 = {b, c}

which lead to the inequalities

xt
a + xt

b + α̂a + α̂b ≤ 1

xt
b + α̂b ≤ 1

4.2 bipartite hypergraph matching as subproblem 65

a

b

c

d

e

f

1

0

0

0

1

Figure 10: A graph where RISS does not produce sufficient optimality cuts

xt
b + xt

c + α̂b + α̂c ≤ 1.

These inequalities are all satisfied by

(xt
a, xt

b, xt
c, α̂a, α̂b, α̂c) = (1, 1, 1, 0,−1, 0).

But this vector does violate the original Benders’ cut

xt
a + xt

b + xt
c + α̂a + α̂b + α̂c ≤ 1

which means that it is indeed necessary to use an undirected auxiliary graph for
finding the new optimality cuts, as the directed version in the RISS procedure
would not be sufficient to cut off all infeasible master solutions.

Note that the subproblem cost does not need to be distributed to the exact corre-
sponding α̂ in the master problem. In the example a feasible master solution would
be

(xt
a, xt

b, xt
c, α̂a, α̂b, α̂c) = (1, 1, 1, 0,−2, 0)

even though the costs in the subproblem are actually generated by the matching
from the vertices a and c. Nevertheless the total subproblem cost is still equivalent.

The improvements of the Benders’ cuts can have a significant impact on the
solver performance (as shown in Chapter 6) and in the case of the optimality cuts
it can even be crucial to use the improved cuts in order to arrive an algorithm that
is sufficiently stable to not report wrong results. Note that these improved cuts
require the current master problem solution to be integral (at least the xt), while
the classical Benders’ cuts can also be used to separate fractional points.

bipartite hypergraph matching as subproblem

In MILP (4.1) defined in Section 4.1, the definition of matrix D ensured that the
subproblem will always be a bipartite matching problem. The subproblem could
be solved by linear programming as this structure ensures total unimodularity of
D which in turn enabled us to perform the classical Benders’ decomposition. If
the underlying graph is a bipartite hypergraph, the matrix D does not need to
be totally unimodular anymore. Therefore it is necessary to use the combinatorial
Benders’ methodology described in Section 3.5. Knowing that the subproblem is a
bipartite hypergraph matching problem will allow us to improve the quality of the

66 matching as subproblem for benders’ decomposition

generic feasibility cuts and do other improvements resulting in an efficient method
for certain applications (e. g., university course timetabling as described in Chapter
6).

Assuming we again want to solve (4.1) but this time the definitions of D1 and D2

are based upon a bipartite hypergraph G = (U ∪V, E) instead of a bipartite graph.
We want to solve this model using the combinatorial Benders’ procedure, placing
the x variables in the master problem and the y variable in the subproblem. In
order for the combinatorial Benders’ method to work we require that the domain
for xo is also binary. Only the case where d = 0, i. e., the subproblem does not
contribute to the objective function and is only needed to ensure feasibility, will be
considered.

In Section 2.6 it was shown that this new subproblem is NP-complete in general.
In our applications these problems are solved using a general purpose MILP solver,
which have a sufficiently fast runtime in the examples considered. In certain appli-
cations it might be possible to create better performing combinatorial algorithms
for these kinds of hypergraph matching problems.

As seen in Section 3.5 it is a desirable property when x̂ leading to an infeasible
subproblem implies that x̂′ with x̂′ ≥ x̂ will also lead to an infeasible subproblem.
For hypergraph matchings this property is trivially fulfilled, as if there is no match-
ing covering all Ū ⊆ U, adding an additional vertex to Ū will never be helpful (i. e.,
making the matching instance feasible again). This insight and Theorem 3.2 show
that it would be possible to only use feasibility cuts of the form

xt(Ū) ≤ |Ū| − 1

for certain subsets Ū ⊆ U of the left hand side vertices. These Ū must satisfy
ν(Ū) < |Ū| in order for the cuts to separate the current solution.

Thanks to the matching structure it is possible to still improve upon these cuts
as explained in the following corollary.

Corollary 4.6. Given some subset Ū ⊆ U for which the feasibility cut xt(Ū) ≤ |Ū| − 1
should be added to the master problem. Then we can instead use the cut xt(Ū) ≤ ν(Ū).

Proof. Theorem 2.20 directly shows that these cuts will be valid and not separate
feasible points. In fact it also grants that adding these constraints for all Ū ⊆ U
will be sufficient to ensure feasibility of the subproblem in any case. Furthermore
as one only needs to add a feasibility cut if ν(Ū) ≤ |Ū| − 1, the new cuts have to
be at least as strong as the other ones.

Note that the cuts from Corollary 4.6 are no more difficult to calculate than the
more generic cuts. In order to know the correct subset Ū ⊆ U, it is necessary to
solve the subproblem to optimality and therefore the value ν(Ū) will already be
calculated by the subproblem.

Currently the combinatorial Benders’ algorithm for solving the MILP (4.1) looks
as follows

1. Initialize a set U = ∅

2. Solve max{cᵀ1 xo + cᵀ2 xt : (Āxo ≤ b) ∧ (∀Ū ∈ U , xt(Ū) ≤ ν(Ū)) ∧ (xo ∈
{0, 1}n1) ∧ (xt ∈ {0, 1}|U|)} to optimality and remember an optimal solution
(x̂o, x̂t) (if this problem is infeasible, the original problem was also infeasible).

4.2 bipartite hypergraph matching as subproblem 67

u

(a) The original hypergraph with a high-
lighted (red) maximum matching M̂
and the unmatched node u

u

(b) The auxiliary graph G′ derived from
M̂

u

(c) The nodes reachable from u in G′

Figure 11: An example for the RISS algorithm on a hypergraph instance

3. Solve the maximum matching problem max{1ᵀy : (D1y ≤ x̂t) ∧ (D2y ≤
1) ∧ (y ∈ {0, 1}|E|)} to optimality and remember an optimal solution ŷ.

4. If 1ᵀŷ < |Û| with Û = {u : x̂t
u = 1}, add Û to U and go back to step 2.

5. Otherwise (x̂o, x̂t, ŷ) is an optimal solution to the original problem.

The maximum matching problem max{1ᵀy : (D1y ≤ x̂t) ∧ (D2y ≤ 1) ∧ (y ∈
{0, 1}|E|)} tries to cover as many vertices from U, that are represented by x̂t, as
possible. The set of vertices chosen by x̂t is denoted as Û. Each of these may be
covered at most once and ideally we would like to see each one covered.

Improved feasibility cuts

We have arrived at a combinatorial Benders’ algorithm that will result in an optimal
solution (or report infeasibility) within finite time. But so far the cuts may affect

68 matching as subproblem for benders’ decomposition

a

b

c

w

x

y

z

Figure 12: An instance where RISS fails to find an existing better division of vertices

much more vertices than those that were responsible for the maximum matching
problem having no solution of sufficient size, similarly to the cuts we originally got
for graphs. Therefore it would again be desirable to generate improved cuts, i. e.,
finding smaller infeasible subsystems for the combinatorial Benders’ algorithm.

It turns out that the RISS algorithm from the previous section can be applied
as well to the hypergraph setting. In fact neither in the definition of RISS, nor in
its correctness proof (Theorem 4.3) it was required, that G is a graph. Therefore
the subsets and their respective ν values will still be correct when the underlying
graph is a hypergraph. Figure 11 shows RISS on an example hypergraph with
a maximum matching of size 2. Using RISS only two of the vertices need to be
involved in the feasibility cut.

Unlike in the graph case, RISS does not necessarily provide smallest infeasible
subsystems. As an example, consider the graph G shown in Figure 12, defined as

G = (U ∪V, E)

U = {a, b, c}
V = {w, x, y, z}
E = {{a, w}, {b, w, y}, {b, x, y}, {c, y, z}}.

Here, given the matching M̂ = {{a, w}, {b, x, y}}, one gets R(c) ∩ U = {a, b, c}.
But as every edge, covering b and c, also covers y we get that ν({b, c}) = 1. As
ν({a}) = 1 it would be a better choice to add the cuts for these subsets instead of
adding that for {a, b, c}. It remains to be shown if finding such smallest possible
subsets of the vertices is NP-complete or if there exists a better algorithm than RISS
with polynomial complexity.

Even though RISS does not return the best possible infeasible subsystems, it can
still vastly improve the quality of the added cuts and only takes a small amount of
time to do so.

5
H E T E R O G E N E O U S A G G R E G AT I O N F O R D A N T Z I G - W O L F E
D E C O M P O S I T I O N

This chapter is based on a research project that the author of this thesis pursued
together with his dear colleague Martin Bergner.

The heterogeneous aggregation scheme aims at exploiting certain symmetries
when solving a Dantzig-Wolfe reformulation with a column generation procedure
(see Sections 3.2 and 3.3). The method cleverly employs the theory around match-
ings and the partial transversal polytope (see Section 2.4). In this chapter the rele-
vant theory will be established. To illustrate the concepts we will take the Multiple
Knapsack Problem in several variations as an example. In Chapter 8 more appli-
cations of this methodology, as well as computational studies of its efficiency are
shown.

aggregation of identical subproblems

In Section 3.2 our goal was to solve a model of the form

max{cᵀx : (Ax ≤ b) ∧ (Dx ≤ d) ∧ (x ∈ X)}.

The model may be some arbitrary MILP, so as usual X = R
n1
+ ×Z

n2
+ . We assume

that D has block diagonal structure, leading to the model

max{∑
i∈[k]

ciᵀxi : (∑
i∈[k]

Aixi ≤ b) ∧ (∀i ∈ [k], Dixi ≤ di) ∧ (xi ∈ Xi)}.

The Didi ≤ bi define our subproblem polyhedra

Hi
sub = {x : (Dix ≤ di) ∧ (x ∈ Xi)}.

For the rest of this chapter these are assumed to be bounded, i. e., there are no
extreme rays. This is a crucial assumption as there is no generic way, known to
the author of this thesis, to properly handle extreme rays in the aggregated master
problem when it comes to performing integrality tests and deriving branching
decisions.

As mentioned in Section 3.2, we assume that there is an easy way to find the
extreme points of Hi

sub in any desired direction. Using the extreme points, we
arrive at the master problem

69

70 heterogeneous aggregation for dantzig-wolfe decomposition

max ∑
i∈[k]

∑
p∈Pi

(ciᵀp)λi
p

s.t ∑
i∈[k]

∑
p∈Pi

(Ai p)λi
p ≤ b

∑
p∈Pi

λi
p = 1 ∀i ∈ [k]

λ ∈ R
∑i∈[k](|Pi |)
+ .

If our problem turns out to have a symmetrical structure, where ci = c′ ∈ Qn′ ,

Di = D′ ∈ QmD×n′ , Ai = A′ ∈ QmA×n′ and Xi = X′ = R
n′1
+ × Zn′2

+ with n′ = n′1 + n′2
for all i ∈ [k] then we can significantly simplify this master problem. Instead of
choosing one extreme point per subproblem, the goal is to select k extreme points
from the single subproblem H′sub = {x : (D′x ≤ d′) ∧ (x ∈ X′)}, which can be
done as the subproblems are all identical. Given that P′ are the extreme points of
H′sub the master problem can now be aggregated by setting λp = ∑i∈[k] λi

p. This
leads to the following aggregated master problem (aMP):

max ∑
p∈P′

(c′ᵀp)λp

s.t ∑
p∈P′

(A′p)λp ≤ b

∑
p∈P′

λ′p = k

λ ∈ R
|P′|
+ .

(5.1)

This way of aggregating identical subproblems is well known (see, e. g., chapter
13 of “50 years of integer programming” [97]). The aMP has several advantages over
the original MP, as it is smaller and we only need to solve a single subproblem in
the pricing step. Furthermore, as extreme points are valid for each subproblem, it
is not necessary to add the same extreme point to each subproblem, reducing the
number of variables by potentially a large factor. Also for the MP any solution can
be permuted into k! equivalent variations which can be a major issue in a branch
& price algorithm. This problem is mitigated with the aMP as the decision which
solution belongs to which subproblem is only made in the disaggregation step,
which will be described after the following example.

Example

To illustrate aggregation, let us consider the following modified knapsack problem.
Given a set I of items and a set K of knapsacks. Item i ∈ I is described by its weight
ai ≥ 0 and its profit vi ≥ 0. Knapsack k ∈ K is described by its capacity ck. The
items can be placed in the knapsacks, as long as the total weight of the items
does not exceed the knapsack’s capacity. The goal is to find a packing of items
that maximizes the total profit of the packed items. In order to have symmetrical
subsystems in this example, the knapsack capacities will all be set equal as ∀k ∈
K, ck = c.

5.1 aggregation of identical subproblems 71

We will use the following original formulation for this problem, where the bi-
nary variables xi,k encode whether item i is placed in knapsack k or not:

max ∑
k∈K

∑
i∈I

vixi,k

s.t. ∑
i∈I

aixi,k ≤ c ∀k ∈ K (5.2)

∑
k∈K

xi,k ≤ 1 ∀i ∈ I (5.3)

x ∈ {0, 1}|I|·|K|.

Here constraints (5.2) ensure that each knapsack’s capacity is not exceeded.
These constraints will form our subproblem. They make a good choice for sub-
problems, as each of them is simply a single knapsack constraint. Therefore the
subproblems can be solved via a combinatorial algorithm for knapsack problems
(e. g., via dynamic programming [57]). Constraints (5.3) ensure that each item is
packed at most once. They will be put in the master problem.

When reformulating this original formulation as described in Section 3.2, each
extreme point of the subproblems represents a feasible packing of items for the re-
spective knapsack. As in this example all knapsacks have the same capacity, we can
aggregate the master problem. As usual, the set P will contain all the subproblem’s
extreme points. This leads to the following aMP:

max ∑
p∈P

vᵀpλp

s.t. ∑
p∈P
pi=1

λp ≤ 1 ∀i ∈ I (5.4)

∑
p∈P

λp = |K| (5.5)

λ ∈ R
|P|
+ .

The constraints (5.4) are corresponding to constraints (5.3). There exists a vari-
able per possible knapsack packing, making sure that each item is packed at most
once and that exactly one packing is chosen per knapsack, which is enforced by
constraint (5.5).

In a column generation procedure, the extreme points in P have to be generated
on demand. Given that the dual values for constraints (5.4) are stored in vector π

and that the dual value of (5.5) is stored in ρ, new extreme points can be found
with the pricing problem:

max (∑
i∈I

(vi − πi)xi)− ρ|K|

s.t. ∑
i∈I

aixi ≤ c + ρ

x ∈ {0, 1}|I|.

As already mentioned, these subproblems are simple knapsack problems, which
can be solved very efficiently in practice. Note that if c + ρ ≤ 0 the subproblem
will be immediately infeasible.

72 heterogeneous aggregation for dantzig-wolfe decomposition

So far we could solve the aMP using column generation, but we might end
up with a fractional solution. In Section 3.3 we saw how to add branching con-
straints that are equivalent to branching decisions on the original variables. Such
constraints may not be sufficient anymore in the aggregated case. It will there-
fore be necessary to ensure integrality in the aggregated master problem with an
appropriate branching scheme, which will be described later.

Disaggregation

Given some solution of the aMP (or its LP relaxation), the challenge is to retrieve
the values for the MPs variables λi

p from the solution. As the blocks are completely
symmetrical, the solution can be distributed in any feasible way to the k blocks.
It is desirable to have a disaggregation method that does preserve integrality, i. e.,
when all the λp of the aMP take integral values we do not want to distribute those
in a way such that the λi

p are not integral anymore. This can easily be achieved by
defining some order on the extreme points and then matching the aMP solution
along this order to a corresponding MP solution. Such a method (with an addi-
tional requirement on the ordering) was described by Vanderbeck (2011) [160]. It
works as follows.

First assume that there is a strict ordering < of the extreme points in P′. Now
some solution λ∗ of the aMP can be disaggregated into a solution of the MP by the
recursive rule

λi
p
∗
= min{1, λp

∗ − ∑
j∈[i−1]

λ
j
p
∗
, (k− ∑

p′<p
λp
∗)+} ∀p ∈ P′, i ∈ [k]. (5.6)

The rule (5.6) ensures that

• no extreme point is assigned a value greater than 1.

• for each extreme point e no more than a total value of λp
∗ is distributed

among the blocks.

• within each block i a total value of at most 1 is distributed (in order to satisfy
∑p∈Pi λi

p = 1).

This way any feasible solution of the aMP can be turned into a feasible coun-
terpart of the MP. Note that any change in the ordering of the blocks might lead
to a different feasible MP solution, which might also happen when changing the
ordering < of the extreme points.

If λ∗ ∈ Z|P| then this disaggregation method ensures that ∀i ∈ [k], λi∗ ∈ Z|P|

and therefore xi = ∑p∈P λi
p p ∈ Zn, i. e., the method preserves integrality of the

aMP variables. But if the aMP solution is fractional, there may still exist some way
to disaggregate the solution into an integral solution xi of the original variables. In
this case the suggested disaggregation method is not guaranteed to find integral
solutions if they exist. It even turns out that trying to figure out such an integral
disaggregation from a fractional aMP solution is in general an NP-complete task:

Theorem 5.1. Given a set P ⊆ Zn of extreme points, an integer number k ≥ 1 of blocks,
and values λp ∈ R+ for all p ∈ P, with ∑p∈P λp = k. Deciding if the disaggregation
problem has an integral solution, i. e., if there exists λi

p ∈ R+ for all p ∈ P, i ∈ [k] such
that ∀p ∈ P, ∑i∈[k] λi

p = λp and ∀i ∈ [k], xi = ∑p∈P λi
p p ∈ Zn, is NP-complete.

5.1 aggregation of identical subproblems 73

Proof. The problem lies within NP, as one can easily verify whether a given distri-
bution of the extreme points to the blocks leads to an integral solution.

The NP-hardness is shown via a reduction from the 3-dimensional matching
problem. The 3-dimensional matching problem, as defined by Garey and Johnson
(1979) [77], is given by three disjoint sets of vertices W, X, and Y of size |W| = |X| =
|Y| = k and a set E ⊆ W × X × Y of hyperedges of cardinality 3 with one element
from each set. The question for 3-dimensional matching is whether there exists a
subset M ⊆ E of pairwise disjoint edges with size |E| = k, i. e., covering all vertices.
Answering this question is a NP-complete problem [100].

Given some 3-dimensional matching instance, where V = W ∪ X ∪ Y is the
set of all verties, let us construct a disaggregation problem with |E| blocks and
2|V|+ |E| extreme points of dimension 3|V|+ |E|+ 1. Let i(v) ∈ [|V|] be a unique
index assigned to each vertex. Let i(e) ∈ [|E|] be a unique index for each edge
e ∈ E. In the following construction there will be an extreme point for each edge
and two extreme points for each vertex. The first of each vertice’s extreme points
will be used to indicate chosen edges, the other one will be a dummy for the
remaining edges. The construction will make sure that each edge extreme point
must be paired with three vertex extreme points of the same type. One of the
vertex extreme points will indicate the chosen edge and the other one will be a
dummy for the remaining edges. The extreme points will be called pe for each
e ∈ E, pv for each v ∈ V and p̂v as the dummy for v ∈ V. They are constructed as

pe
i =


1 if ∃v ∈ e, i = i(v)

2 if i = 3|V|+ 1 + i(e)

0 otherwise

pv
i =



3 if i = i(v)

2 if i = |V|+ 1

6 if i = |V|+ 1 + i(v)

0 otherwise

p̂v
i =


3 if i = i(v)

6 if i = 2|V|+ 1 + i(v)

0 otherwise.

Let P be the set containing all these points. When Hsub is chosen as the convex
hull of P, then P will contain all extreme points of Hsub. Furthermore no p ∈ P
can be in the interior of Hsub as every point has one index with a non zero value
that is unique to p. Therefore p cannot be a convex combination of the other points.
While this does not give us further information about the form of Hsub, we know
that there is some subproblem which will lead to the extreme points P.

The λ vector will be chosen as

λpe =
1
2

, λpv =
1
6

, λ p̂v =
|E(v)| − 1

6

74 heterogeneous aggregation for dantzig-wolfe decomposition

where E(v) is the set of edges incident to vertex v ∈ V. Note that these λ values
satisfy the requirements of adding up to |E|, as

|V|
6

+ ∑
v∈V

|E(v)| − 1
6

=
1
6 ∑

v∈V
|E(v)| = 1

2
|E|

where the last step follows from the fact that each edge contains exactly 3 vertices.
In order for the reduction to work it needs to be shown that a feasible solution

of the 3-dimensional matching problem corresponds to an integral disaggregation
of these extreme points. Let M ⊆ E be a 3-dimensional matching. For the block
corresponding to e ∈ M the disaggregation of the extreme points will be given as

λ
i(e)
p =


1
2 if p = pe

1
6 if ∃v ∈ e, p = pv

0 otherwise.

I. e., these blocks receive the extreme points corresponding to their respective edges
and the non dummy extreme points for the edges vertices.

Equivalently for e ∈ E \M the extreme points will be distributed in the following
way

λ
i(e)
p =


1
2 if p = pe

1
6 if ∃v ∈ e, p = p̂v

0 otherwise.

Note that there is always exactly one block for each edge which means that
∑i∈[k] λi

pe = λpe for all pe. For pv there is exactly one i such that λi
pv = 1

6 , as
every vertex is covered by exactly one edge e ∈ M. Equivalently each vertex v is
covered by exactly |E(v)| − 1 edges from E \ M which means that for p̂v we get
∑i∈[k] λi

p̂v = (|E| − 1) · 1
6 = λ p̂v .

Next we need to verify that this disaggregation is indeed integral. As each
block corresponds to exactly one edge we can look at these individually. First
we consider the edge e ∈ E \ M. For block i(e), the disaggregated solution is
xi(e) = 1

2 pe + ∑v3e
1
6 p̂v. Now we can check the integrality of xi(e) for each dimen-

sion i. For i = 3|V|+ 1 + i(e) only pe has a non zero entry (with value 2) therefore
the corresponding position in xi(e) is 1

2 · 2. Equivalently for entries 2|V|+ 1 + 1 till
2|V| + 1 + |V|, each has one corresponding vertex v such that the relevant entry
in p̂v has a non zero value (of 6) if v ∈ e and zero otherwise. Again this yields
an integral entry for xi(e) of 1. The last range of indices where we have non zero
values is 1 till |V|. If v 6∈ e then λ

i(e)
p̂v = 0 and therefore xi(e)

i(v) = 0. For v ∈ e we get

an entry from both pe as well as p̂v, resulting in xi(e)
i(v) =

1
2 · 1 +

1
6 · 3 = 1.

Now we need to verify that also the blocks for e ∈ M are integral. Similar to
before, the disaggregated solution for block i(e) now is xi(e) = 1

2 pe + ∑v3e
1
6 pv. For

indices i = 3|V|+ 1 + i(e) there is again only one edge and therefore only a single
non zero entry with value 1. In the same way for indices of the form |V|+ 1 + i(v)
we get an entry of 6 · 1

6 = 1 if v ∈ e and zero otherwise. The last index we need

to check is |V| + 1. As e covers exactly 3 vertices, we get xi(e)
|V|+1 = 3 · 2 · 1

6 = 1.
Therefore the resulting solution is integral.

5.2 branching with identical subproblems 75

Finally it needs to be verified that an integral disaggregation of our disaggre-
gation instance corresponds to a feasible solution of the 3-dimensional matching
problem. First note that the extreme point components with indices starting at
|V|+ 2 always occur in only one extreme point. They make sure that in an integral
solution no less than a fraction of 1

2 can be chosen for an edge extreme point and
no less than 1

6 for a vertex or a dummy extreme point.
Duplicate edges in the 3-dimensional matching instance can be removed without

affecting the problem’s complexity, therefore we can assume that no edge occurs
twice. In an integral solution no block can be assigned two edge extreme points,
because there must be at least one vertex not shared by the edges, for which the
respective component i(v) would end up with a non integral value of 1

2 . As there
are a total of |E| blocks, each block must be assigned exactly one edge extreme
point with value 1

2 .
Next consider the distribution of the vertex extreme points pv. Each block can

host between one and three of them (taking into account the space already taken
by the edge extreme points). If at least one pv is assigned to a block, the component
with index |V|+ 1 dictates that two more vertex extreme points must be assigned
to this block in order to arrive at an integral solution. In order to achieve an integral
entry in component i(v), the vertex extreme point must be matched with an edge
extreme point pe such that v ∈ e.

Putting these findings together, a block in an integral solution will consist of
one edge extreme point, either matched with three vertex extreme points or three
dummy extreme points which fit to the corresponding edge. Those edges matched
with the vertex extreme points form a solution to the 3-dimensional matching,
which concludes the reduction.

Integrality test

If some of the variables in the original formulation need to be integral, the ag-
gregated master problem will need to be embedded in a branch & bound frame-
work. Due to the aggregation, this can be even more challenging than for the
non-aggregated master problem (see Section 3.3).

The first step is to check whether the current solution at hand is already integral.
Note that the disaggregation scheme ensures that integral λ of the aMP translate to
integral x of the original problem. But a fractional λ can still represent an integral
solution of the original problem. We can stop if xi∗ = ∑e∈P′ pλi

p
∗ ∈ X′. Otherwise

we need to perform branching which will be explained in the next section.

branching with identical subproblems

This section will deal with the issue of adding branching decisions to the aMP
in order to achieve integrality. It turns out that additional effort is required as
a branching scheme based on the original variables might no longer be able to
exclude all fractional solutions. Two branching schemes will be presented to handle
this issue.

76 heterogeneous aggregation for dantzig-wolfe decomposition

Feasibility of branching on original variables

Section 3.3 described how in a branch & price algorithm branching may be carried
out such that it is equivalent to branching on the variables of the original formu-
lation. When aggregation is used, this might no longer be sufficient to reach an
integral solution. First note that due to the aggregation, the original variables sim-
ply do not have a direct correspondent in the aMP. If we aggregate the original
variables as ∑i∈[k] xi = y we get an aggregated equivalent of the original variables.
In the aMP we could make branching decisions based on the y variables in a simi-
lar fashion as described in Section 3.3. Sadly it can happen, that y turns out to be
integral in all components while the disaggregated xi are not. This is especially the
case when set partitioning constraints or other equalities are involved, which force
y to be integral.

Even though branching on original variables does not guarantee an integral solu-
tion, it can still be a useful tool, especially as – depending on the problem structure
– these branching decisions may be handled with greater computational efficiency.

As an example where branching on original variables helps in improving the
dual bound, consider the following multiple knapsack problem. Given two knap-
sacks with capacity 4 each and four items with weights a1 = a2 = a3 = 2 and
a4 = 3, as well as profits of 1 each. Optimally we can pack two of the first three
items together and then choose one last item to pack in the second knapsack, lead-
ing to a total profit of 3. But a fractional aMP solution can do better. Using the
subproblem extreme points p1 = (1, 1, 0, 0)ᵀ, p2 = (0, 1, 1, 0)ᵀ, p3 = (1, 0, 1, 0)ᵀ, and
p4 = (0, 0, 0, 1), a feasible aMP solution would be to set λp1 = λp2 = λp3 = λp4 =

1
2 .

This way the first three items are chosen fully, while only half of the fourth item
is taken. The aggregated original variables are y = (1, 1, 1, 0.5)ᵀ. Branching on the
fourth item yields the two branching constraints

∑
p∈P
p4=1

λp ≤ 0 and ∑
p∈P
p4=1

λp ≥ 1.

Now in each branch, the resulting solution will be integral, either choosing the
first three items or two of the first three items and the fourth.

Discretization

When branching on (aggregated) original variables one can be sure not to cut off a
feasible integral solution by accident. When turning to more advanced branching
schemes, it gets more difficult to ensure this does not happen. As explained earlier,
the disaggregation scheme we use is not guaranteed to find an integral disaggrega-
tion from a fractional aMP solution even if it exists and there is not much hope to
find another method to do so in polynomial time (see Theorem 5.1). By cutting off
this fractional aMP solution by the branching constraints, we might rid ourselves
from the optimum.

A way to circumvent this problem is to ensure that for every integral original
solution there exists an aMP solution with integer variables. In order to assert
this property one can use the discretization approach (see Section 3.3) and make
sure that the aMP has a variable for every subproblem solution, not just for each
extreme point. Note that Theorem 5.1 means that it might make more sense to use

5.2 branching with identical subproblems 77

discretization than to try constructing a procedure to optimally disaggregate the
aMP solution and is able to create branching decisions which exclude non integral
aMP solutions but do not cut off optimal solutions by accident.

Ryan and Foster branching rule

One branching rule to handle aggregated problems with a certain structure was
described by Ryan and Foster (1981) [139]. It requires the master problem to expose
either a set packing or a set partitioning structure (see Section 1.8). Even though
these restrictions are imposed on the problem, many important problem classes
display the corresponding structure.

We require that the variables of the original problem are either fractional or
binary, i. e., xi ∈ X′ = {0, 1}n′1 ×R

n′2
+ . In branching we only need to enforce the

integrality of the binary variables, therefore let B be the set of indices for which xi

should be binary and xi
B the binary part of xi.

Additionally we need the aMP to be of the form

max ∑
p∈P

c′ᵀpλp

s.t. ∑
p∈P
pj=1

λp [≤ or =] 1 ∀j ∈ B (5.7)

∑
p∈P

λp = k

λ ∈R
|P|
+

where each of the constraints (5.7) is either a set packing or a set partitioning
constraint. This structure enforces that each of the binary elements in the original
variables is chosen either at most once or exactly once. For the aggregated orig-
inal variables y = ∑i∈[k] xi this implicates y ≤ 1. In the case of set partitioning
constraints the y will be forced to be integral. When dealing with set packing con-
straints, this needs to be ensured before using the branching rule by Ryan and
Foster. This can be achieved by branching on the aggregated original variables, as
described earlier.

When looking at two indices j1, j2 ∈ B, j1 6= j2, with yj1 = yj2 = 1, there are
now four distinct configurations for the corresponding original variables in each
block: xi

{j1,j2} ∈ {(0, 0)ᵀ, (0, 1)ᵀ, (1, 0)ᵀ, (1, 1)ᵀ}. We can count how often the (1, 1)ᵀ

configuration is chosen, i. e., how often the two components appear together. To
do so, we define the virtual variables

zj1,j2 = ∑
p∈P

pj1=pj2=1

λp.

Assuming that all z are integral, we can fully disaggregate the binary parts of
the original variables xi

B to an integral solution. This works, e. g., by starting with
setting x1

j = 1 (where yj = 1) for some j ∈ B, and then put x1
j′ = zj,j′ for j′ ∈

B \ {j}, repeating this for the other blocks and binary variables which were not
yet distributed. Now the binary parts give a fixed disaggregation scheme for the
extreme points, so the fractional parts can be disaggregated in a feasible way.

78 heterogeneous aggregation for dantzig-wolfe decomposition

Therefore if we cannot disaggregate the aMP into an integral solution, there must
be two indices j1, j2 ∈ B, j1 6= j2 such that zj1,j2 6∈ {0, 1}. We can now branch on
these virtual variables. Ryan and Foster (1981) [139] propose to handle the branching
as follows.

In one branch, zj1,j2 will be forced to 1. This branch is called the “same branch”,
because any feasible solution enforces xi

j1 = xi
j2 . In this branch one now proceeds

by setting the λp to 0 in the aMP if p is infeasible with respect to the branching
decision, i. e., pj1 6= pj2 . The subproblems need to be changed to

max{(cᵀ − πᵀA′)x : (D′x ≤ d) ∧ (xj1 = xj2) ∧ (x ∈ X′)}

to ensure that only new variables obeying the branching decision are created. In the
“differ branch”, where wj1,j2 is forced to 0, the subproblem accordingly is changed
to

max{(cᵀ − πᵀA′)x : (D′x ≤ d) ∧ (xj1 ≤ 1− xj2) ∧ (x ∈ X′)}

to ensure that no extreme points are generated, where both variables are present.
Again, in the aMP, we need to set λp = 0, when pj1 = pj2 = 1.

Note that these additional constraints in the master problem can significantly
alter the subproblems structure. It can easily happen, that a previously employed
combinatorial algorithm will cease to work on the new structure. In such cases
other options to handle pricing are available, depending on the pricing struc-
ture [97].

Vanderbeck branching rule

The branching rule by Ryan and Foster can be extended to more general problems,
as was shown by Vanderbeck (2011) [160]. For this to work, it is required that the
ordering of the feasible points in the integrality test is the lexicographical ordering.
Note that there exist multiple such orderings as one can just reorder the variables.

In the Ryan and Foster branching scheme we choose indices j1 and j2 for which
we enforced that either a point with both set to 1 is in the solution or none. In the
general case this is not sufficient, as on the one hand the components in a feasible
solution may have values greater than 1 and on the other hand feasible points with
the corresponding values may be used multiple times in the aMP.

In order to be more generic, the branching rule will be based upon two vectors
s ∈ {−1, 0, 1}n′ and l ∈ Zn′ of size corresponding to the subproblem size. Now the
interesting feasible points are F(s, l) = {p : (p ∈ P̄) ∧ (diag(s)p ≥ l)}, where P̄ are
the points we have added to the master problem so far. Note that for sj1 = sj2 = 1,
∀j /∈ {j1, j2}, sj = 0 and l = 1, the set P(s, l) will be exactly the set of feasible points
where both components are set to at least one, as it was chosen in the Ryan and
Foster rule.

Vanderbeck (2011) [160] explains that if the integrality test (based on the lexico-
graphical ordering) fails, there always exist s and l such that

∑
p∈P(s,l)

λp = α 6∈ Z.

Based upon this, we can divide the problem alongside the branching constraints
∑p∈F(s,l) λp ≥ dαe and ∑p∈F(s,l) λp ≤ bαc.

5.3 aggregation with heterogeneous subproblems 79

As in the Ryan and Foster branching rule, the subproblem needs to be adjusted
based upon the branching decision taken. These adjustments are not trivial and can
again significantly alter the structure of the subproblem. Furthermore precautions
need to be taken on the choice of s and l in later branching decisions, to avoid an
explosion in the complexity of the subproblem. For more details on how this can
be handled in practice, please refer to Vanderbeck (2011) [160].

aggregation with heterogeneous subproblems

In this section we will look at a more general case than we did previously, when
aggregating identical subproblems. Again we start with a block diagonal structure

max{∑
i∈[k]

ciᵀxi : (∑
i∈[k]

Aixi ≤ b) ∧ (∀i ∈ [k], Dixi ≤ di) ∧ (xi ∈ Xi)}.

But this time we only require that for all i ∈ [k] we have ci = c′, Ai = A′,
and Xi = X′. This means we require that each block has the same structure in
the master problem but can have a different subproblem. Again it is possible, that
solutions can easily be swapped between blocks (even though not necessarily to all
k! permutations). Therefore it would be desirable to still have a way to aggregate
problems with such structure.

As the subproblems now can have different sets of extreme points, we collect
all of them in one set P =

⋃
i∈[k] Pi. Lacking the distinction of blocks in the master

problem means that, as long as only the master problem is concerned, one could
just aggregate as before and arrive at the same aMP (5.1) as before. But now the
problem arises that one of the solutions produced from this aMP cannot necessarily
be disaggregated into a feasible original solution. Therefore additional work needs
to be performed in the aMP to ensure feasibility.

Example

In the previous multiple knapsack example, each knapsack had the same capacity
c. If we modify this setting such that each knapsack k has its own capacity ck, our
original formulation becomes

max ∑
k∈K

∑
i∈I

vixi,k

s.t. ∑
i∈I

aixi,k ≤ ck ∀k ∈ K

∑
k∈K

xi,k ≤ 1 ∀i ∈ I

x ∈ {0, 1}|I|×|K|.

As already mentioned, it may often happen that the packings of two knapsacks
can be easily exchanged if their capacities are similar, which would imply that
many packings will be present multiple times for different knapsacks, leading to
copies of variables carrying no additional information.

80 heterogeneous aggregation for dantzig-wolfe decomposition

Disaggregation

When the subproblems are not identical, not every extreme point can be matched
to any block anymore. Therefore disaggregation becomes more complicated. We
can create a bipartite graph G = (P∪ [k], E), where there is an edge {p, i} ∈ E if p ∈
Hi

sub. This graph indicates which extreme points can be matched to which block.
Assuming that the aMP solution is integral, disaggregation becomes equivalent to
finding a matching in G between the [k] vertices and those vertices from P where
λe ≥ 1. Note that to get a proper matching problem one needs to copy vertices
p ∈ P where λp > 1, a modification that does not add to the problems complexity.
Also note that the resulting disaggregated solution will be integral.

The idea of a bipartite graph between extreme points and subproblems allows
us the corresponding graph theoretical notation in cases where it is convenient,
such as N(i) and N−1(i) to refer to the different kinds of neighborhood of i.

If the aMP solution is not fractional, disaggregation can be achieved by solving
a maximum flow problem on the graph Gh = (P ∪ [k] ∪ {s, t}, Eh) with edges
Eh = E ∪ {(s, p) : p ∈ P} ∪ {(i, t) : i ∈ [k]}, source s and sink t. The edge capacities
are given as

w(p,i) = 1 ∀i ∈ [k], p ∈ Hi
sub

w(s,p) = λp ∀p ∈ P

w(i,t) = 1 ∀i ∈ [k].

If the maximum flow on Gh has a total value of k, the aMP solution is valid
and can be disaggregated. When φ(p,i) is the corresponding flow on edge (p, i) for
p ∈ P and i ∈ [k], the disaggregated solution is

∀i ∈ [k], xi = ∑
p∈N(i)

φ(p,i)p.

This method of disaggregation preserves the integrality of the aMP solution
if the underlying maximum flow algorithm finds integral flows in graphs with
integral capacities (see Theorem 1.2). E. g., solving the maximum flow algorithm
the Ford and Fulkerson algorithm will return an integral flow in this case [5].

As any way of disaggregating the aMP solution is equivalent to a flow in Gh,
a maximum flow of value less than k is equivalent to an infeasible aMP solution.
Therefore the maximum flow of size k is a necessary and sufficient condition for
the disaggregatability of the aMP if the aMP solution is integral.

Ensuring feasibility in the aMP

As we have just seen, the disaggregation of the aMP is closely related to finding
(fractional) matchings in a bipartite graph and the algorithm for disaggregation
resembles the separation routine for the partial transversal polytope explained in
Section 2.4. In fact an aMP solution only cannot be disaggregated, if it lies out-
side of the partial transversal polytope defined by the graph G from the previous
paragraph. In order to ensure that the aMP solution can be disaggregated (and

5.3 aggregation with heterogeneous subproblems 81

is therefore feasible), we need to add the corresponding constraints to the aMP,
which now becomes

max ∑
p∈P

(c′ᵀp)λp

s.t ∑
p∈P

(A′p)λp ≤ b

∑
p∈P

λe = k

∑
p∈N−1(Ī)

λp ≤ | Ī| ∀ Ī ⊆ [k]

λ ∈ R
|P|
+ .

(5.8)

With the partial transversal polytope constraints added, any solution of the aMP
(5.8) can be disaggregated. As there are 2k subsets Ī ⊆ [k], it may be intractable
to add all of the partial transversal polytope constraints right away. Instead it is
advisable to use a separation algorithm which adds those constraints on demand.
Note that the maximum flow method used for disaggregating the aMP solution is
equivalent to the minimum cut method that was used in Section 2.4 to separate the
partial transversal polytope (see Theorem 1.3). Therefore if an aMP solution cannot
be disaggregated, one immediately has a necessary cut at hand which needs to be
added.

Special case: ordered subproblems

As seen in Theorem 2.17 the number of required constraints for the partial transver-
sal polytope is small, if the matching graph has an ordered structure. Applied to
the heterogeneous aggregation problem this means that the subproblems can be
ordered such that a feasible solution for one subproblem is also feasible for all
preceding subproblems, i. e., ∀i ∈ [k], ∀x ∈ X′, (Dix ≤ di ⇒ (∀j ≤ i, Djx ≤ dj)).

For such instances with ordered subproblems, the aMP can be formulated as

max ∑
p∈P

(c′ᵀp)λp

s.t ∑
p∈P

(A′p)λp ≤ b

∑
p∈P

λp = k

∑
p∈N−1([i])

λp ≤ i ∀i ∈ [k]

λ ∈ R
|P|
+ .

and consequently the aMP can be solved without using a separation algorithm to
generate the partial transversal polytope constraints on demand.

Example

The multiple knapsack problem is among the problems which have ordered sub-
problems, as a packing of a smaller knapsack will always fit into a larger one and

82 heterogeneous aggregation for dantzig-wolfe decomposition

we can order the knapsacks such that c1 ≥ c2 ≥ . . . ≥ ck. As a result only a small
number of partial transversal polytope constraints are required. This means we
can formulate the aMP without a separation routine as

max ∑
p∈P

vᵀpλp

s.t. ∑
p∈P
pi=1

λp ≤ p ∀i ∈ I

∑
p∈P

λp = |K|

∑
p∈P

∀k′ 6∈K̄,aᵀp>ck′

λp ≤ |K̄| ∀k ∈ K, K̄ = {k′ ∈ K : ck′ ≥ ck}

λ ∈ R
|P|
+ .

Here the partial transversal polytope constraints are given by one constraint
per knapsack. Each constraint ensures that for the group of the corresponding
knapsack and the knapsacks of the same or larger capacity, not more packings are
chosen, that do not fit into some smaller knapsack, than the number of knapsacks
in the group.

A modification of the multiple knapsack problem without this property can be
obtained by modifying the item weights such that each item can have different
weights in different knapsacks, i. e., we now have weights ai,k for item i if it is to
be placed in knapsack k.

branching with heterogeneous subproblems

As in the case of identical subproblems, branching decisions for heterogeneous sub-
problems need some additional work in order to arrive at integral solutions. Again
branching on the original variables may help in some cases but is not guaranteed
to result in an integral solution.

Ryan and Foster branching rule

The branching rule by Ryan and Foster [139] remains applicable for heterogeneously
aggregated problems, as long as the underlying original formulation is a purely
binary problem. In that case the virtual z variables completely determine which
entries with value 1 occur together in one of the blocks, if the z turn out to be
binary. Afterwards disaggregation is a simple bipartite matching problem.

To see why the branching rule might fail to result in an integral solution in
problems with fractional variables, consider a problem with variable space X′ =
{0, 1}2 × R and two blocks, where the first subproblem block has a constraint
(0, 0, 1)x ≤ 1 and the second one has a constraint (0, 0,−1)x ≤ 2. Now assume
that the following extreme points for the subproblems exist.

p1 =

 1

1

0.5

 , p2 =

 1

1

2.5

 , p3 =

 0

0

0.5

 , p4 =

 0

0

2.5

 .

5.5 pricing with heterogeneously aggregated subproblems 83

For a master solution λp1 = . . . = λp4 = 0.5, the virtual variable z1,2 would be 1,
as index 1 and 2 only occur together. But the fractional (and not branched upon)
part prevents an integral disaggregation of this solution.

Feasibility of Vanderbecks branching rule

For more general integer programming problems one would also like to use the
Vanderbeck branching rule to enforce integrality of the master solution. Vander-
beck (2011) [160] needed the disaggregation to follow a strict scheme, where the
extreme points were assigned to blocks according to a lexicographical ordering. In
heterogeneous aggregation this is no longer possible, as we need to use a differ-
ent disaggregation methodology. Therefore the original proof for the existence of
branching set defining vectors l and s no longer applies and we cannot guarantee
that the scheme will always arrive at an integral solution.

Note that in the binary case with only set packing and set partitioning con-
straints in the master problem, the Vanderbeck branching rule is equivalent to a
combination of branching on original variables and the Ryan and Foster branching
rule and therefore still works, as the Ryan and Foster rule is still applicable.

pricing with heterogeneously aggregated subproblems

When using heterogeneous aggregation, many (potentially an exponential amount
of) constraints are added to the master problem in order to ensure that we can dis-
aggregate a solution. Each of those constraints translates into a dual value that may
affect the subproblem. Therefore it is important to ensure that the subproblem can
still be solved efficiently and that these additions do not destroy structural proper-
ties that were important for efficiency. This section will show how it is possible to
perform pricing in the presence of these obstacles.

The proposed pricing technique will use modified dual constraints for check-
ing the optimality of the aMP. It will be shown that these modified constraints
are equivalent to the original ones if the dual solution has a certain property that
will be called σ-nested. Furthermore it will be shown that any dual solution of
the aMP can be transformed into a σ-nested dual solution with the same objective
value. This transformation does not alter the modified constraints mentioned be-
fore which will lead to the insight that the new constraints can also be used if the
dual solution at hand has not the special property of being σ-nested.

Nested dual solutions

The first step is to look more closely at possible dual solutions of the aMP, es-
pecially the dual variables corresponding to the newly introduced constraints for
the partial transversal polytope. Given that σ are the dual variables for the partial

84 heterogeneous aggregation for dantzig-wolfe decomposition

transversal polytope constraints and ρ and π are those for the convexity and the
remaining aMP constraints, the dual formulation of the aMP is

min bᵀπ + kρ + ∑
Ī⊆[k]
| Ī|σĪ

s.t. (A′p)ᵀπ + ρ + ∑
Ī⊇N(p)

σĪ ≥ c′ᵀp ∀p ∈ P

(π, ρ, σ) ∈ R
mA
+ ×R×R2k

+ .

(5.9)

The ∑ Ī⊇N(p) σĪ terms introduce significant changes into the dual formulation. In
order to deal with these it will help if the σ variable have the following structure

Definition 5.2. An aMP dual solution is said to be σ-nested iff for Ī1, Ī2 ⊆ [k] with
σĪ1

, σĪ2
> 0 and Ī1 6= Ī2 it holds that either Ī1 ⊂ Ī2 or Ī2 ⊂ Ī1.

The goal of this section will be to show that an aMPs dual solution can be
expected to be σ-nested. The first step towards this goal is to establish that the
dual variable values can be shifted away from non nested to nested sets.

Lemma 5.3. Let (π, ρ, σ) be a solution to (5.9). Given Ī1, Ī2 ⊆ [k], with (Ī1 6⊆ Ī2)∧ (Ī2 6⊆
Ī1) ∧ (σĪ1

, σĪ2
> 0), then (π, ρ, σ′) with

σ′Ī =


σĪ −min{σĪ1

, σĪ2
} if Ī ∈ { Ī1, Ī2}

σĪ + min{σĪ1
, σĪ2
} if Ī ∈ { Ī1 ∪ Ī2, Ī1 ∩ Ī2}

σĪ otherwise

is also a solution to (5.9) with the same objective value.
If (π, ρ, σ) was feasible then so is (π, ρ, σ′).

Proof. In order to verify the equality of the objective values, we look at the four
terms in the dual master problem that change due to the new σ′ values, i. e., | Ī1| ·σ′Ī1

,
| Ī2| · σ′Ī2

, | Ī1 ∪ Ī2| · σ′Ī1∪ Ī2
and | Ī1 ∩ Ī2| · σ′Ī1∩ Ī2

. On the one hand we have

| Ī1| · σ′Ī1
+ | Ī2| · σ′Ī2

= | Ī1| · σĪ1
+ | Ī2| · σĪ2

− (| Ī1|+ | Ī2|) ·min(σĪ1
, σĪ2

)

and on the other hand we get

| Ī1 ∪ Ī2| · σ′Ī1∪ Ī2
+ | Ī1 ∩ Ī2| · σ′Ī1∩ Ī2

= | Ī1 ∪ Ī2| · σĪ1∪ Ī2
+ | Ī1 ∩ Ī2| · σĪ1∩ Ī2

+ (| Ī1|+ | Ī2|) ·min(σĪ1
, σĪ2

)

as | Ī1|+ | Ī2| = | Ī1 ∪ Ī2|+ | Ī1 ∩ Ī2|. Adding these two equations together, we get that
there is no overall change in the objective value.

It remains to show that the new dual solution is feasible if (π, ρ, σ) was feasi-
ble. As there is no change in the π and ρ values, we need to ensure that ∀p ∈
P, ∑ Ī⊇N(p) σĪ ≤ ∑ Ī⊇N(p) σ′Ī . Of course this sum is again relevant only for the four
changing terms of σ. In order to do so we distinguish four cases for the extreme
points:

5.5 pricing with heterogeneously aggregated subproblems 85

N (p) ⊆ Ī1 ∩ Ī2 : This case implies (N (p) ⊆ Ī1) ∧ (N (p) ⊆ Ī2) ∧ (N (p) ⊆
Ī1 ∪ Ī2), therefore all four changing σ terms are part of the corresponding
constraint. From the construction of σ ′ it follows directly that σ Ī1

+ σ Ī2
+

σ Ī1∪ Ī2
+ σ Ī1∩ Ī2

= σ ′Ī1
+ σ ′Ī2

+ σ ′Ī1∪ Ī2
+ σ ′Ī1∩ Ī2

which implies the feasibility for
this extreme point’s constraint.

(N (p) ⊆ Ī1) ∧ (N (p) 6⊆ Ī2) : In this case we have that N (p) ⊆ Ī1 ∪ Ī2 and
N (p) 6⊆ Ī1 ∩ Ī2. With only two relevant terms in the corresponding con-
straint checking that σ Ī1

+ σ Ī1∪ Ī2
= σ ′Ī1

+ σ ′Ī1∪ Ī2
(which holds as the min

terms cancel each other) is sufficient to show feasibility.

(N (p) ⊆ Ī2) ∧ (N (p) 6⊆ Ī1) : This case is equivalent to the previous one.

(N (p) 6⊆ Ī1) ∧ (N (p) 6⊆ Ī2) : In this case also N (p) 6⊆ Ī1 ∩ Ī2. Therefore only
the component for Ī1 ∪ Ī2 might be present in the constraint. Since σ Ī1∪ Ī2

≤
σ ′Ī1∪ Ī2

the constraint is again satisfied.

As the constraints of (5.9) will be satisfied for each extreme point p ∈ P, the
newly constructed dual solution (π , ρ , σ ′) is again feasible, which concludes the
lemma.

Note that the procedure described in Lemma 5.3 not only retains dual feasibility
for the aMP but might increase the left hand sides of the dual constraints in (5.9).
Also an optimal dual solution will result in another optimal dual solution under
the modifications of Lemma 5.3.

The next step will be to show that by using Lemma 5.3 it is possible to transform
any dual solution of (5.9) into a corresponding σ-nested solution.

Lemma 5.4. Given a solution (π , ρ , σ) of (5.9). Repeated application of Lemma 5.3 will
result in a σ-nested dual solution within a finite number of steps.

Proof. If (π , ρ , σ) is not already σ-nested, there exist two sets Ī 0
1 , Ī 0

2 ⊆ [k] such
that (Ī 0

1 6⊆ Ī 0
2) ∧ (Ī 0

2 6⊆ Ī 0
1) ∧ (σ Ī 0

1
, σ Ī 0

2
> 0). Let the dual solution resulting

from application of Lemma 5.3 be denoted as (π , ρ , σ1). By construction either
σ1

Ī1
= 0 or σ1

Ī2
= 0. Given (π , ρ , σ1) is still not σ-nested, the lemma can be

applied repeatedly with (π , ρ , σ i) being the solution in step i. The two sets used
in step i will be denoted as Ī i

1 and Ī i
2.

Now assume that it is possible to create an infinite sequence σ1 , σ2 , . . . in this
way. In this case there has to be j > k such that σ j = σk . Let l ′ = arg max l≤ j | Ī l

1 ∪
Ī l

2 |, i. e., Ī ′ = Ī l ′
1 ∪ Ī l ′

2 is the subset for which some σ i
Ī ′ was changed in the sequence

up till j. This means that σ
j
Ī ′ > σk

Ī ′ as the dual value in position Ī ′ was only
increased so far but never decreased. Therefore the sequence cannot be infinite
which concludes the lemma.

Lemma 5.3 and 5.4 together ensure that each dual solution of the aMP can be
turned into a σ-nested dual solution with the same objective value while preserv-
ing feasibility. The next step will be to show that with σ nested dual solutions it
is possible to simplify the pricing problem and keep structural properties of the
original pricing problem. Note that Lemma 5.4 does not claim that a σ-nested dual
solution can be found efficiently. To arrive at a meaningful pricing procedure it will
furthermore be necessary to show that one does not need to compute a σ-nested
dual solution explicitly.

86 heterogeneous aggregation for dantzig-wolfe decomposition

The modified pricing procedure

From the dual formulation of the aMP (5.9) it follows that in order to be LP optimal
the dual values of the aMP must satisfy

∀ p ∈ P , (c ′ᵀ − πᵀ A ′) p − ∑
Ī⊇N (p)

σ Ī − ρ ≤ 0. (5.10)

While we assumed that it is possible to check all extreme points p ∈ P implicitly
via some unspecified algorithm, the σ terms can introduce additional complexity.
Luckily it can be shown that one does not need to check all the possible combina-
tions of blocks explicitly if the dual solution is σ-nested.

Lemma 5.5. Given a σ-nested solution (π, ρ, σ) for (5.9). The solution (π, ρ, σ) is feasible
if and only if

∀i ∈ [k], ∀p ∈ N(i), (c′ᵀ − πᵀA′)p− ∑
Ī⊆[k]
i∈ Ī

σĪ − ρ ≤ 0. (5.11)

Furthermore if (5.11) is violated for (i, p), then (5.10) is violated for p.

Proof. The first step will be to show the “⇒” direction of the lemma. To do so it
suffices to show that

∀i ∈ [k], ∀p ∈ N(i), ∑
Ī⊆[k]
i∈ Ī

σĪ ≥ ∑
Ī⊇N(p)

σĪ .

As p ∈ N(i) ⇒ i ∈ N(p) and therefore (p ∈ N(i)) ∧ (Ī ⊇ N(p)) ⇒ i ∈ Ī, every
term on the right hand side will also appear on the left hand side, which shows
that the inequality holds. Furthermore this asserts that a violation of (5.11) for
some extreme point guarantees that (5.10) will be violated for the same extreme
point.

In order to show the “⇐” direction, assume that all constraints (5.11) are fulfilled
but an extreme point p̂ ∈ P exists such that (5.10) is violated for p̂. Let us define
g ∈ Rk as

gi = ∑
Ī⊆[k]
i∈ Ī

σĪ − ∑
Ī⊇N(p̂)

σĪ .

In order for p̂ to be violating (5.10), gi > 0 for all i ∈ N(p̂). It also follows that there
has to be Ī ⊆ [k] such that i ∈ Ī, Ī 6⊇ N(p̂) and σĪ > 0 for all i ∈ N(p̂). Choose Ī1

as such a set of maximal size:

Ī1 = arg max
Ī⊆[k]

Ī 6⊇N(p̂)
σĪ>0

| Ī|.

Next choose any î ∈ N(p̂) \ Ī1. Such a î has to exist as N(p̂) 6⊆ Ī1. As gî > 0
there has to exist Ī2 with N(p̂) 6⊆ Ī2 and î ∈ Ī2. Now Ī2 6⊆ Ī1 as î ∈ Ī2 but î 6∈ Ī1. As
| Ī1| ≥ | Ī2| and Ī1 6= Ī2 we also conclude Ī1 6⊆ Ī2. But as σĪ1

, σĪ2
> 0 this contradicts

the assumption that (π, ρ, σ) was σ-nested.

5.5 pricing with heterogeneously aggregated subproblems 87

Using Lemma 5.5 one can see that for a σ-nested dual solution it suffices to
perform pricing for each of the original blocks independently, where the σ terms
add up to a constant that is fixed for each block and therefore do not change the
subproblem’s structure. As shown in Lemma 5.4 any aMP dual solution can be
transformed to become σ-nested. The only drawback here is that the procedure in
Lemma 5.4 might be very time consuming as we have not established a polynomial
bound on the number of steps that need to be performed to arrive at a σ-nested
dual solution. Therefore it is desirable to get along without computing a σ-nested
solution explicitly. To do so the next lemma will show that contraints (5.11) remain
unchanged under lemma 5.3.

Lemma 5.6. Given a solution (π, ρ, σ) of (5.9) and let (π, ρ, σ′) be the result of applying
Lemma 5.3 to (π, ρ, σ). Then

∀i ∈ [k], ∑
Ī⊆[k]
i∈ Ī

σ′Ī = ∑
Ī⊆[k]
i∈ Ī

σĪ .

Proof. To show this we need to verify that the procedure from Lemma 5.3 does not
alter this sum in any way.

Given Ī1 and Ī2 as described in Lemma 5.3. Similar to the proof of Lemma 5.3
we need to check four different cases for the i ∈ [k]:

i ∈ Ī1 ∩ Ī2 : In this case also Ī1, Ī2 and Ī1 ∪ Ī2 will be indices of the sum on both
sides. Therefore the min{σ Ī1

, σ Ī2
} terms cancel each other out.

i ∈ Ī1 \ Ī2 : Here only Ī1 and Ī1 ∪ Ī2 are indices of the sum on both sides. Again
the changing terms cancel out.

i ∈ Ī2 \ Ī1 : This case is equivalent to the previous one.

i 6 ∈ Ī1 ∪ Ī2 : In this case no terms in the sum change at all.

Therefore none of the transformations done by Lemma 5.3 introduce changes to
the relevant sums over the σ.

With Lemma 5.6 we get that the contraints (5.11) do not differ between some
non σ-nested dual solution and its σ-nested equivalent. Now all reuqired pieces
are in place to show that it is sufficient for a valid pricing procedure to check
constraints (5.11) for the dual solution of the aMP that is at hand without making
transformations to it.

Theorem 5.7. Given a dual solution (π , ρ , σ) for (5.9). If

∀ i ∈ [k] , ∀ p ∈ N (i) , (c ′ᵀ − πᵀ A ′) p − ∑
Ī⊆ [k]
i∈ Ī

σ Ī − ρ ≤ 0 (5.11)

then there exists a feasible dual solution for (5.9) with the same objective value as (π , ρ , σ).
Otherwise if the constraints are violated for (i ′ , p ′) then

(c ′ᵀ − πᵀ A ′) p ′ − ∑
Ī⊇N (p ′)

σ Ī − ρ > 0

.

88 heterogeneous aggregation for dantzig-wolfe decomposition

Proof. Using Lemma 5.3 and 5.4 we know that there exists a σ-nested solution
(π , ρ , σ ′) having the same objective value as (π , ρ , σ).

Assume that (5.11) are fulfilled for (π , ρ , σ). Then by Lemma 5.6 these con-
straints are also fulfilled for (π , ρ , σ ′). Using Lemma 5.5 we can now conclude
that (π , ρ , σ ′) is in fact a feasible dual solution for (5.9).

On the other hand assume that (5.11) is violated for (i′, p′). Then by Lemma 5.6
we know that the same constraints will be violated for (π, ρ, σ′):

(c′ᵀ − πᵀA′)p′ − ∑
Ī⊆[k]
i′∈ Ī

σ′ Ī − ρ > 0.

Using Lemma 5.5 shows that (5.10) must then be violated by (π, ρ, σ′) for p′:

(c′ᵀ − πᵀA′)p′ − ∑
Ī⊇N(p′)

σ′ Ī − ρ > 0.

But if (π, ρ, σ′) is infeasible so must (π, ρ, σ) by the construction in Lemma 5.3.
This construction also guarantees that (5.10) will be violated for (π, ρ, σ) for the
same extreme point p′.

Given Theorem 5.7, we can use a pricing procedure that does not alter the struc-
ture of the subproblems. To do so we solve the original subproblem for each block
i ∈ [k]:

min{(c′ᵀ − πᵀA′)p : (Di p ≤ di) ∧ (x ∈ X′)}

and check whether for the resulting extreme point p holds

(c′ᵀ − πᵀA′)p ≤ ∑
Ī⊆[k]
i∈ Ī

σĪ + ρ.

If this constraint is violated, we have found a new variable to add to the restricted
aMP. If for none of the blocks such a violated constraint is found, then Theorem 5.7
guarantees that there is some dual solution with the same objective value as the
current one for which there is no violated dual constraint left. We can therefore stop
the pricing routine for this node of the search tree. Note that it was not necessary
to compute this solution explicitly, e. g., by repeated application of Lemma 5.3 but
we can rely on the knowledge of its existence. Furthermore note that if we use a
separation algorithm for the partial transversal polytope constraints in the master
problem, all σ values for non separated constraints are zero. As long as the subset
of separated constraints does not grow too large, which often is the case in practice,
∑ Ī⊆[k]

i∈ Ī
σĪ can be easily calculated.

Part II

A P P L I C AT I O N

6
T I M E TA B L I N G P R O B L E M S

introduction

Educational timetabling is a very common area of application for optimization
methods. Such problems often arise in the administrative daily routine of many
schools and universities. Wren (1996) [166] defines timetabling as “the allocation,
subject to constraints, of given resources to objects being placed in space time, in
such a way as to satisfy as nearly as possible a set of desirable objectives”. The
exact details can vary a lot depending on the use case and setting considered.
Most timetabling problems have some kind of underlying graph coloring struc-
ture (which also renders almost all of them NP-hard [40,46,60,61,153]) in the sense that
timeslots can be seen as colors that need to be assigned to courses and certain
courses may not share the same color [60].

This chapter will consider certain timetabling problems as a particular applica-
tion of the decomposition methods that were described in Chapter 4. Lach and
Lübbecke (2008) [106,107] initially proposed such a decomposition for solving the
university course timetabling problem. Matias Sørensen and the author of this the-
sis used and modified these methods to tackle a high school timetabling problem
that arose in Danish high schools [149]. To do so we exploited the special structure
of these problems to show that the size of the partial transversal polytope is small
for the real world cases, and that the corresponding constraints can be enumerated.
Furthermore we discovered a way to heuristically approximate the Benders’ opti-
mality cuts for matching subproblems without the need of a separation procedure.

Another modification to the methods by Lach and Lübbecke is to use hyper-
graph matchings in the Benders’ subproblem in order to be able to solve certain
timetabling problems with more complicated structures. Such problems arise at the
timetabling problem that is currently solved at RWTH Aachen University within
a project called “carpe diem!” which was conducted (among others) by G. Lach, M.
Lübbecke and the author of this thesis. While certain methods are so far only the-
oretical considerations, they might also be applied within this project in the near
future.

The timetabling problems explained in this chapter all deal with the assign-
ment of courses to timeslots and rooms. Usually, the assignment to timeslots alone
turns out to be NP-complete due to its relation to graph coloring. Such educational
timetabling problems have been studied for a long time. Unsurprisingly, there ex-
ists a large body of research so far, which is surveyed in the next section. The
methodologies by Lach and Lübbecke (2008) [106] and how they fit into the frame-
work from Chapter 4 will be explained, alongside the modifications by Sørensen
and Dahms (2014) [149] and the extensions for using hypergraph matchings in the
subproblem. The last section will show the results of various computational exper-
iments for the different methods.

91

92 timetabling problems

literature review

A huge body of literature has been published so far about educational timetabling
problems. Early introductions were published by Schmidt and Ströhlein (1980) [145]

and de Werra (1985) [62]. A general survey about timetabling is given by Schaerf
(1999) [143]. Surveys with a focus on university timetabling can be found by Carter
and Laporte (1998) [46], Burke and Petrovic (2002) [43], Petrovic and Burke (2004) [131],
and Lewis (2008) [111]. Note that there exist many different definitions and require-
ments for the problem formulations, so the results from different studies often
cannot be compared directly. A part of this chapter will follow the definitions pro-
posed by Bonutti et al. (2012) [38].

High school timetabling problems often vary dramatically between countries
due to different legislations. Therefore many country specific studies have been
conducted. Al-Yakoob and Sherali (2015) [7] give a list of several such country spe-
cific publications (many of them PhD theses). Sorted by country, there are for
example:

australia : Merlot (2005) [119]

the netherlands : de Haan et al. (2007) [59], Hartog (2007) [88], and Willemen
(2002) [165]

denmark : Sørensen and Dahms (2014) [149] and Sørensen and Stidsen (2013) [150]

finnland : Marte (2002) [115]

germany : Jacobsen et al. (2006) [96] and Junginger (1986) [98]

greece : Beligiannis et al. (2008) [21], Beligiannis et al. (2009) [22],
Birbas et al. (1997) [29], and Papoutsis et al. (2003) [130]

hong kong : Kwok et al. (1997) [105]

italy : Alvarez-Valdés et al. (2002) [11] and Avella et al. (2007) [15]

south africa : Raghavjee and Pillay (2010) [137]

spain : Alvarez-Valdés et al. (1995) [10], Alvarez-Valdés et al. (1996) [9], and Alvarez-
Valdés et al. (2002) [12]

An archive of high school timetabling instances from eight different countries is
presented by Post et al. (2014) [133].

The majority of the available studies focuses on the application of various (meta)
heuristics to generate good feasible solutions. Sorted by type of heuristic there are
for example:

ant colony optimization : Socha et al. (2003) [148]

genetic algorithm : Beligiannis et al. (2008) [21], Beligiannis et al. (2009) [22],
Corne et al. (1994) [51], Fernández and Santos (2003) [70], Raghavjee and Pil-
lay (2010) [137], and Ueda et al. (2004) [156]

local search : Avella et al. (2007) [15] and Schaerf (1999) [142]

6.2 literature review 93

neural networks : Carrasco and Pato (2004) [44], Carrasco and Pato (2004) [45],
and Gislén et al. (1989) [81]

simulated annealing : Abramson (1991) [3], Elmohamed et al. (1998) [68],
Thompson and Dowsland (1996) [154], and Zhang et al. (2010) [167]

tabu search : Abdullah et al. (2007) [1], Aladag et al. (2009) [8], Alvarez-Valdés
et al. (2002) [11], Alvarez-Valdés et al. (2002) [12], Hertz (1991) [91],
Hertz (1992) [92], Jacobsen et al. (2006) [96], and Santos et al. (2005) [140]

Colorni et al. (1998) [49], Lewis (2008) [111], and Rossi-Doria et al. (2003) [138] provide
comparisions of several metaheuristics.

As a non heuristic approach, several constraint logic programming approaches
were studied by Azevedo and Barahona (1994) [16], Frangouli et al. (1995) [72], Guéret
et al. (1996) [85], Henz and Würtz (1996) [90], Legierski (2003) [110], and Valouxis and
Housos (2003) [158]

Integer programming formulations for timetabling have already been studied
in the earliest days of integer programming by Gotlieb (1962) [83] and Lawrie
(1969) [108]. Other MILP models for timetabling can be found by Al-Yakoob and
Sherali (2006) [6], Birbas et al. (1997) [29], Burke et al. (2007) [41], Burke et al. (2008) [42],
Daskalaki and Birbas (2005) [58], Harwood and Lawless (1975) [89], and Tripathy
(1984) [155].

As already pointed out in Chapter 3 many hard problems can be efficiently
solved using some kind of decomposition method. This chapter will focus on using
Benders’ decomposition, especially with matching as a subproblem. Solving uni-
versity course timetabling problems using a similar approach was first described
by Lach and Lübbecke (2008) [106] and Lach and Lübbecke (2008) [107]. Another ap-
plication of this methodology was used for Danish high schools by Sørensen and
Dahms (2014) [149]. The approach was applied for a broad spectrum of real life
instances with up to 516 classes.

Chapter 3 also described the dual of the Benders’ decomposition, the Dantzig-
Wolfe decomposition, especially in conjunction with column generation (CG) as a
method for solving these reformulations. Some studies exist using column genera-
tion for tackling timetabling problems. Papoutsis et al. (2003) [130] solve some very
small (at most 9 classes, 21 teachers) Greek high school timetabling problems with
CG. Santos et al. (2012) [141] generate lower bounds for slightly larger instances (20

classes, 33 teachers) by CG. A more recent use of CG in high school timetabling
with a focus on Kuwait was studied by Al-Yakoob and Sherali (2015) [7] who han-
dled instances with up to 34 classes and 65 teachers but also just provided bounds
on the solution quality. It should be noted that CG approaches for high school
timetabling so far were used on much smaller scale than the Benders’ approach
used by Sørensen and Dahms (2014) [149]. Even though this is not a thorough com-
parison (especially as the different countries enforce different requirements on the
problem formulation) it indicates that high school timetabling is more suited for
Benders’ algorithms. CG for a university timetabling problem was studied by Qual-
izza and Serafini (2005) [136] but also only considered relatively small instances with
up to 63 courses.

Another related problem is exam timetabling which is not studied in this thesis.
A survey covering recent developments in this field is given by Qu et al. (2009) [135].

94 timetabling problems

problem definition

Basic components

The concepts of this chapter are designed for creating weekly timetables, as they
often appear in university and high school settings. Almost all of these timetabling
problems have the following components in common:

• A set of lectures L. A lecture is a single unit, taught at most once per week
over a consecutive time period, not changing rooms in between.

• A set of timeslots T. A timeslot represents the smallest, common period of
time within which a lecture can be hold. Each timeslot appears once per week
and all timeslots have the same duration. One objective of timetabling is to
assign lectures to timeslots. It can be relevant whether two timeslots appear
on the same day, therefore the timeslots can also be grouped to days T̄ ⊆ T
with D being the set of all days. The day of a timeslot will be denoted as
D(t).

• A set of rooms R. Each lecture shall be assigned to one or (in some cases)
more rooms.

• A bipartite graph of feasible timeslots Gtime = (L ∪ T, Etime). Graph Gtime

defines which lectures may be assigned to which timeslots. This can be a
hypergraph in which case a lecture may occupy multiple timeslots at the
same time (e. g., if it spans more time than the duration of a single timeslot).

• A bipartite graph of feasible rooms Groom = (L ∪ R, Eroom). Graph Groom de-
fines which lectures may be assigned to which rooms. This can also be a
hypergraph, in which case a lecture may be hold in two rooms simultane-
ously.

• A conflict graph Gconf = (L, Econf). Two neighboring lectures in Gconf may not
share a timeslot.

These timetabling core components are often sufficient to describe the require-
ments of a feasible solution for many applications. A feasible solution of the
timetabling problem are sets Mtime ⊆ Etime and Mroom ⊆ Eroom such that each
lecture is covered by one element of each set, neighboring lectures in Gconf do not
share a timeslot and no two lectures sharing a timeslot are assigned the same room.

More formally, the requirement of covering each lecture once can be expressed
as ∀l ∈ L, (|{e ∈ Mtime : l ∈ e}| = 1)∧ (|{e ∈ Mroom : l ∈ e}| = 1). Now we can use
the shorthand notation Mtime(l) for a set containing the timeslot assigned to l and
Mroom(l) for a set containing the room assigned to l. Then a feasible timetabling
solution also needs to satisfy

∀{l1, l2} ∈ Econf, Mtime(l1) ∩Mtime(l2) = ∅

and with I(Mtime) = {{l1, l2} : Mtime(l1) ∩ Mtime(l2) 6= ∅} being the set of inter-
secting lectures in Mtime there also has to hold

∀{l1, l2} ∈ I(Mtime), Mroom(l1) ∩Mroom(l2) = ∅.

6.3 problem definition 95

Sometimes it is not clear that such feasible solutions do exist, in which case one
might want to maximize the size of Mtime and Mroom such that each lecture is
covered at most by an edge in each of the two sets. In order to ensure that there
are no infeasible instances, we will use the maximization formulation if not stated
otherwise and penalize unassigned lectures with a default value of 100.

This thesis will not deal with multiple objectives, Pareto optimality and other
issues stemming from having multiple, potentially conflicting criteria in an opti-
mization problem. Therefore all soft requirements will need to be translated into a
single currency that will be optimized in the objective.

Even in this most basic form the timetabling problem is already NP-complete, as
the conflict graph Gconf can easily encode a graph coloring problem.

Theorem 6.1. The basic timetabling problem is NP-complete

Proof. The problem lies within NP as is easy to check whether two sets Mtime and
Mroom are a feasible solution in polynomial time.

To show NP-hardness one can do a simple reduction from graph coloring. In
graph coloring we are given some graph G = (V, E) and a total of k colors. Then
answering the question whether it is possible to assign each vertex a color such
that neighboring vertices have different colors is NP-complete [100].

Given a graph coloring instance G = (V, E) and k, a basic timetabling instance
L = V, T = [k], R = V is constructed using the graphs

Gtime = (L ∪ T, {{l, t} : l ∈ L, t ∈ T})
Groom = (L ∪ R, {{v, v} : v ∈ V})
Gconf = (L, E).

This way a lecture is created for each vertex and a timeslot for each color. Each
lecture will be allowed to be scheduled in each timeslot. Furthermore every lecture
gets its own room that can only be used by that specific lecture. This way the room
assignment will always be trivial. The conflict graph will be exactly the coloring
graph.

Now a solution of the coloring problem will directly translate into an assignment
of lectures to timeslots and vice versa, which concludes the reduction.

Restrictions on the structure of the conflict graph might render the problem easy
but this usually is not the case. Instead often more requirements are needed for a
specific application which even add complexity to the problem. All the problem
instances presented here are NP-hard by the reduction from Theorem 6.1, as they
do not impose sufficient restrictions on the structure of the conflict graph.

Depending on the problem, the edges in Gtime and Groom may be weighted, mod-
eling preferences for the time and room assignment. Here the weight of the chosen
edges will be counted in the objective function.

The matching of lectures to rooms within the graph Groom will be used as a
subproblem in a Benders’ decomposition for the following applications. Therefore
a major focus will be placed upon these matchings. Thus, if not specified otherwise,
the graph Groom will be the default choice, e. g., for the neighborhood of a vertex
(i. e., N(l) = NGroom(l)).

For integer programming models, often certain constraints turn out to be stronger
than others. For example coloring formulations can benefit greatly from using con-
straints based on maximal cliques in the graph, instead of constraints based on

96 timetabling problems

edges, as the clique based constraints form some of the facets of the graph coloring
polytope [48,129]. In the timetabling problem the conflict graph is usually defined by
the constraints stemming from student curricula or teachers. These define cliques
of lectures which may not intersect in the timetable and these cliques may very
well be already maximal. Therefore it is a good idea to use this given information
in the problem formulation. Such cliques can be modeled by introducing hyper
edges into the conflict graph Gconf. In the following it will be assumed that such
hyper edges are always allowed.

Lectio high school instances

Sørensen and Stidsen (2013) [150] and Sørensen and Dahms (2014) [149] use a dataset
of timetabling problems taken from a wide range of high schools in Denmark. The
problem formulation used in these papers reflect adjustments relevant for these
specific instances. This problem formulation is also used in the commercial high
school timetabling system Lectio. The used datasets stem from the users of the
Lectio system.

Many additional soft constraints are incorporated in the Lectio model. Many
requirements are based upon the preferences of students and teachers. The set
A contains all these entities, where a student a ∈ A may represent multiple real
but equivalent students. Some of the requirements will only apply to students or
teachers, represented as As and At. The lectures of entity a ∈ A will be represented
by L(a)

idle-timeslots : For students as well as teachers the number of idle timeslots
between lectures on the same day shall be minimized. Each of these idle
timeslots is penalized by an amount βa that varies by the entity a (student,
teacher).

days-off : It is often required that teachers have at least one day off. Furthermore
it is preferable for a teacher to have as many days off as possible. Therefore
it is a hard requirement to have at least a certain number Fa of days off
(depending on the teacher), but also each day off will be awarded an amount
of γa in the objective. Conversely it is not preferred for students to have days
off, so for students the γa will be negative.

day-conflicts : The lectures are grouped to classes and from each class at most
one lecture shall be scheduled each day, which is a hard constraint.

neighbor-days-for-classes : In order to allow more time for completion of
homework, it is preferred to have lectures of the same class being scheduled
over non-consecutive days (in addition for them not being on the same day).
For each class L̄ there is a specified number NL̄ of allowed neighboring days.
Furthermore each of the occurring neighbor days shall be penalized by an
amount of ζ.

teacher-daily-workload : Each teacher shall have a maximum of pa lectures
scheduled for a certain day, which is to be modeled as a hard constraint. Also
a teacher should have more than one lecture on each day (if it is not a day
off). Days with exactly one lecture for a teacher are therefore penalized by an
amount of ηa.

6.3 problem definition 97

room-stability : For each class it is desirable to have all of its classes taking
place in the same room. Each additional room used by a class is penalized by
an amount of ε.

Most of the times only a schedule for one week is required which then repeats
itself every week. In some cases it is desired to plan a total of two weeks (leading
to twice the amount of timeslots) in order to allow for additional flexibility (like
allowing an average of 1.5 days off for a certain teacher each week). In these cases
the following two additional requirements are to be incorporated:

days-off-stability : The required days off shall be distributed evenly between
weeks, i. e., when having 3 days off in total over the two weeks, each week
shall contain at least one of these. This is to be modeled as a hard constraint.

class-stabillity : Equivalently to the previous requirement, the lectures be-
longing to the same class shall be evenly distributed between the weeks. Each
lecture that is out of balance shall be penalized by an amount of ι (e. g., if
there shall be 7 classes in two weeks and they are distributed 2 to 5, there are
2 lectures out of balance).

Udine instances

There exists a couple of timetabling instances published by the University of Udines
research group on scheduling and timetabling. These instances can be found at

http://tabu.diegm.uniud.it/ctt/index.php?page=instances

For the experiments of this chapter the following instance sets are used (and
referred to as “Udine instances”)

• ITC-2007: instances used for the international timetabling competition 2007.

• Erlangen: instances from the University of Erlangen (Germany)

All these instances exist in a unified XML format. Bonutti et al. (2012) [38] de-
scribe several modeling variants for timetabling problems based upon these data
sets, including exact benchmarking instructions for evaluating solutions. As these
models are not fully compatible with the requirements we had at RWTH Aachen,
the solver methods developed in this thesis do not fit all parts of these models.
Therefore not all components suggested by Bonutti et al. (2012) [38] are being im-
plemented.

The Udine instances specify the requirements of the basic timetabling problem
in the following way:

• The instances do not specify preferences of the lectures for timeslots. There-
fore the edges of Gtime will not have weights by default. Also the goal will
be to maximize the number of scheduled lectures. Each unscheduled lecture
will be penalized by an amount of 100.

• Each lecture shall be scheduled in a room with sufficient seats for its students.
Each missing seat shall be penalized in the objective by an amount of 1. These
penalties are modeled as weights on the edges of Groom with suitable rooms
having weight 0 and smaller rooms a weight corresponding to the number
of missing seats. Alternatively a variant will be tried where this component

http://tabu.diegm.uniud.it/ctt/index.php?page=instances

98 timetabling problems

will be modeled as a hard constraint, i. e., with the edges of weight greater
than 0 removed.

• Each lecture may specify timeslots and rooms which are forbidden, i. e., the
corresponding edges may not be present in Gtime and Groom.

• Conflicts between lectures are defined by a set of curricula and by lectures
sharing the same teacher.

Additionally the following requirements are modeled as soft constraints, affect-
ing the optimization objective. The used weights will be the same for all instances:

min-working-days : Lectures are grouped as courses. The lectures of the same
course shall be distributed over at least a certain number of days. Every day
less than this minimum shall be penalized by an amount of 1.

student-min-max-load : For each curriculum there is a minimum and max-
imum number of lectures from the curriculum that shall be scheduled on
every day. Each lecture above or below these bounds shall be penalized by
an amount of 1.

isolated-lectures : For each curriculum isolated lectures (scheduled to a time-
slot without another lecture of that curriculum scheduled to a neighboring
timeslot) are penalized by an amount of 1.

Additional constraints, which are not included here, are those which affect the
assignment of lectures to rooms. To the author’s current state of knowledge these
are not suitable for the Benders’ algorithm developed here and would prevent
proper comparisons.

RWTH Aachen instances

The timetabling problem that we encountered during the work on the “carpe diem!”
project for establishing automated timetabling at RWTH Aachen university exhibit
two special properties. On the one hand some rooms can be joined to form a
single larger lecture hall. On the other hand it is very common that lectures span
multiple timeslots, e. g., some tutorials have a duration of only one hour (thereby
forcing a timeslot to be of a length of at most one hour) but most lectures have
a length of at least two hours (sometimes even more) and it is unacceptable for
such a lecture to be split up or to change lecture rooms in between timeslots. To
cope with these requirements while maintaining a Benders’ type decomposition as
used for simpler timetabling problems, the combinatorial Benders’ decomposition
for subproblems with hypergraph structure was developed (see Section 4.2). The
graphs Gtime and Groom are therefore hypergraphs for these instances.

Two instances from the data set of the “carpe diem!” project are evaluated in this
chapter – one for the scheduling of the summer term 2015 and one for the winter
term 2015/2016. Anonymized versions of these data sets are available alongside
the solver code in the following GitLab repository:

https://gitlab.com/florian.dahms/TimetablingSolver

These two instances are relatively large. Both instances work with 60 timeslots
and 457 rooms. The summer term instance has 3708 lectures with 15307 conflicting

https://gitlab.com/florian.dahms/TimetablingSolver

6.3 problem definition 99

cliques of lectures, while the winter term instance has 3893 lectures with 21328 con-
flicting cliques of lectures. Note that the conflicts are stated in the form of cliques
resulting from different lecturers and student groups for which the corresponding
lectures shall not share a timeslot. In the notation this can be handled by allowing
hyper edges in the graph Gconf. In the instances used here, all conflicts are treated
equally as hard constraints in order to focus on the core concepts presented in this
thesis. In a proper application many of them should be treated as weak constraints,
while on the other hand additional requirements are necessary for applicable re-
sults.

No matter how one choses to treat the conflicts between lectures, the RWTH
instances are on the one hand rather large (much larger than all the others con-
sidered here) and on the other hand there are only two of them. In order to test
the algorithms more thoroughly, an instance generator was implemented to create
additional instances with the appropriate hypergraph structure. The generated in-
stances are smaller than the RWTH instances to allow for a shorter time limit (the
solvers presented here need to be run over several days on the RWTH instances to
reach meaningful results).

For the artificial instances four instance sets with respectively 80, 100, 200, and
500 lectures were created, each instance set containing 50 different instances, lead-
ing to a total of 200 different instances. The instances are furthermore described by
the following properties (the last one will be explained later):

Number of lectures: 80 100 200 500

Number of rooms: 11 13 26 65

Number of conflict cliques: 80 100 200 500

P(“Lecture in conflict clique”) 0.1875 0.15 0.075 0.03

For all instances the planning week is divided into 5 days with 12 timeslots each,
leading to a total of 60 timeslots.

Each room is assigned a size which is equal to its index (i. e., for an instance with
11 rooms, each room will have an unique size between 1 and 11). In each instance
there are two rooms which can be combined into one larger room. These two rooms
are chosen uniformly at random from all rooms. The size of the combined rooms
is the sum of the sizes of the two rooms it is made of.

Each lecture has a length of at least one and up to four timeslots. It is assigned
a length of one timeslot with a probability of roughly 0.1786, a length of two
timeslots with a probability of roughly 0.7143, a length of three timeslots with
a probability of roughly 0.0714 and a length of four timeslots with a probability
of roughly 0.0357. Now the lecture can be matched into the required number of
timeslots, as long as these are on the same day and consecutive. Of these potentially
possible hyper edges for the Gtime graph, each is inserted into the graph with
probability 0.5 (this procedure being repeated for the lecture, if no edge is chosen).
Each of these edges is assigned a weight that is chosen uniformly at random from
{0, 1, 2}.

Each lecture is furthermore assigned a size which is drawn uniformly at ran-
dom from all available room sizes (without the virtual room resulting from the
combination of two rooms). Each lecture can now be matched into all rooms with
size at least the size of the lecture (including the combined room). Of these po-
tentially possible edges (with a hyper edge for the combined room) for the Groom

100 timetabling problems

graph, each is inserted into the graph with probability 0.5 (again the procedure is
repeated for the lecture if no edge is chosen).

For the conflict graph for each conflicting clique of lectures, a lecture is inserted
into the clique with a probability P(“Lecture in conflict clique”) which is different
for each instance set and specified above. The probabilities are chosen such that
the average clique size is 15.

optimization algorithms

The optimization algorithms considered here are based upon integer programming
techniques. It is important to note that the formulation of the problem can have
a major impact on the performance of the solver which, due to the complexity
of today’s solver technology, may not be easy to attribute to the factors under
consideration. Even factors that seem unobtrusive at first, like, e. g., the column
ordering, can massively alter the outcome of the solver. This effect is often denoted
as performance variability [112]. While this should not prevent us from performing
comparisons between model runtimes, these effects should always be kept in mind
when comparing different ILP models.

Three indexed formulation

As a benchmark for the Benders’ methods a canonical ILP formulation will be
used. Usually it is stated with variables indexed by lecture, timeslot and room,
indicating whether that lecture shall be matched into the specified timeslot and
room. Due to these variables this formulation is often denoted as “three indexed
formulation”. In order to generalize better to the hypergraph setting and to better
conform with the notation of this thesis, here variables x{l,t},{l,r} with {l, t} ∈ Etime

and {l, r} ∈ Eroom will be used. Though these variables are only two indexed, this
does neither change the number of variables nor the structure of the model in any
way. Therefore this thesis will stick to calling the model “three indexed”.

For the basic model let w{l,t} for {l, t} ∈ Etime be the weight of the time assign-
ment edges and w{l,r} for {l, r} ∈ Eroom the weight for the room assignment. Note
that the penalty for assigning too small rooms can be directly encoded in the w{l,r}
weights.

Now the basic ILP formulation is:

min ∑
{l,t}∈Etime
{l,r}∈Eroom

(w({l,t} + w{l,r} − 100)x{l,t},{l,r} (6.1)

s.t. ∑
{l′,t}∈Etime
{l′,r}∈Eroom

x{l′,t},{l′,r} ≤ 1 ∀l′ ∈ L

(6.2)

∑
{l,t′}∈Etime
{l,r′}∈Eroom

x{l,t′},{l,r′} ≤ 1 ∀t′ ∈ T, r′ ∈ R

(6.3)

6.4 optimization algorithms 101

∑
l∈econf

∑
{l′,t′}∈Etime
{l′,r}∈Eroom

x{l′,t′},{l′,r} ≤ 1 ∀econf ∈ Econf, t′ ∈ T

(6.4)

x{l,t},{l,r} ∈ {0, 1} ∀ {l,t}∈Etime
{l,r}∈Eroom

.

In the objective (6.1) each assigned lecture is awarded an amount of 100 (as stated
in the requirements for the Udine instances) which is mathematically equivalent
to penalizing a non assigned lecture with that respective amount. Constraint (6.2)
ensures that each lecture is assigned at most once. Constraint (6.3) guarantees that
no room is assigned to multiple lectures in any given timeslot. Finally, constraints
(6.4) allow only one lecture of any conflict clique from Econf at any given timeslot.

Basic Benders’ formulation

As the assignment of lectures to rooms is a matching problem, the timetabling
problem contains the necessary structure for the Benders’ technique described in
Chapter 4. The master problem will be very similar to the three indexed formu-
lation but without the information which lecture will be assigned to which room.
This reduces the number of involved variables by roughly an order of magnitude
in most problem instances. Overall we arrive at the following reduced master prob-
lem for the basic timetabling problem (excluding the Benders’ Cuts):

min ∑
{l,t}∈Etime

(w{l,t} − 100)x{l,t} + α

s.t. ∑
{l′,t}∈Etime

x{l′,t} ≤ 1 ∀l′ ∈ L

∑
l′∈econf

∑
{l′,t′}∈Etime

x{l′,t′} ≤ 1 ∀econf ∈ Econf, t′ ∈ T

x{l,t} ∈ {0, 1} ∀{l, t} ∈ Etime

α ∈ R+.

In order to ensure feasibility and optimality in the room assignment, several vari-
ations of the classical Benders’ method can be applied to this problem as explained
in Chapter 4. The experiments will feature comparisons between several of these.

The subproblem will need access to the result of the master problem. In these
experiments the separation algorithm will only be run on integral solutions, there-
fore we do not need to consider fractional master solutions. The current master
solution will be represented as the assignment Mtime in the subproblem. Note that
not every lecture needs to be present in this assignment, as not assigning a lecture
is only penalized in the master problem.

102 timetabling problems

In the unmodified version, the Benders’ cuts are derived from the dual values of
the problem

min ∑
{l,r}∈Eroom

w{l,r}y{l,r}

s.t. ∑
{l,r}∈Eroom

y{l,r} = 1 ∀{l, t} ∈ Mtime

∑
{l,r}∈Eroom
{l,t}∈Mtime

y{l,r} ≤ 1 ∀r ∈ R, t ∈ T

y ∈ R
|Eroom|
+ .

(6.5)

If (6.5) is infeasible, a Farkas vector π ∈ R|Mtime|×R
|R|·|T|
− can be derived, proving

the problem’s infeasibility. Using this we can add the feasibility cut

∑
{l,t}∈Mtime

π{l,t}x{l,t} ≤ − ∑
r∈R,t∈T

πr,t

to the master problem and run the next iteration.
If the subproblem is feasible but its objective value is greater than the α value in

the current master solution, instead of the Farkas vector, the dual solution of (6.5),
denoted again as π ∈ R|L| ×R

|R|·|T|
− is used to derive the optimality cut

∑
{l,t}∈Mtime

π{l,t}x{l,t} − α ≤ − ∑
r∈R,t∈T

πr,t.

Note that the subproblem can be divided into a bipartite matching problem
for each timeslot. As explained in Chapter 4, the matching structure allows us
to improve the basic Benders’ procedure in certain ways. For example the basic
optimality cuts from the dual values tend to have slow convergence and lead to
numerically unstable problems. Instead the single α value can be replaced by an
α ∈ R

|L|
+ vector with a component for each lecture, that will then hold the subprob-

lem cost for this lecture only. Now given a subproblem solution Mroom we can use
RISS to determine a group S of smaller subsets S ⊆ Mtime, which do not affect
each other in the matching. For these the following, more efficient, optimality cuts
can be generated, given the subproblem’s dual values π ∈ R|Mtime| ×R

|R|·|T|
− :

∑
{l,t}∈S

(π{l,t}x{l,t} − αl) ≤ − ∑
{l,t}∈S

{l,r}∈Mroom

πr,t ∀S ∈ S .

Similarly, instead of the cuts from the Farkas vector, the separation routine for
the partial transversal polytope can be used. Here it is implemented by solving the
maximum matching problem

max ∑
{l,r}∈Eroom

y{l,r}

s.t. ∑
{l′,r}∈Eroom

y{l,r} ≤ 1 ∀{l′, t′} ∈ Mtime

∑
{l,r′}∈Eroom
{l,t′}∈Mtime

y{l,r′} ≤ 1 ∀r′ ∈ R, t′ ∈ T

y ∈ R
|Eroom|
+ .

(6.6)

6.4 optimization algorithms 103

If the solution of (6.6), denoted as Mroom, is not covering all lectures assigned
in the master problem, the RISS algorithm can be used to find a group of small
infeasible subsystems S ⊆ 2Mtime such that each lecture without an assigned room
is present in one of the subsystems. Now the following cuts can be added instead
of the aforementioned feasibility cuts:

∑
{l,t}∈S

xl,t ≤ |{{l, r} ∈ Mroom : ∃{l, t} ∈ S}| ∀S ∈ S .

The modified feasibility cut method does not help to separate suboptimal solu-
tions, so the other subproblem formulation (6.5) needs also to be solved to know
whether to add optimality cuts. It turns out that the influence of the subproblem
solver time is negligible, so this additional effort does not have relevant negative
impact.

Modifications for Lectio high school instances

The algorithms used to solve these instances from high schools in Denmark are
also described in detail by Sørensen and Dahms (2014) [149]. The methods used for
the experiments on this data set are more tailored to the specific instances and
therefore differ in many aspects from the more general methods used otherwise
in this chapter. Note that the definitions and constraints described here slightly
differ from the presentation by Sørensen and Dahms (2014) [149] in order to be more
consistent with the rest of this thesis. Nevertheless the methods are mathematically
equivalent.

A major modification to the Benders’ algorithm used otherwise in this chapter
is that one can manage to enumerate the facets of the partial transversal polytope
for the room matching component in all of the involved instances. This makes it
possible to get along without a cutting plane algorithm, which greatly improves the
solver performance. A similar approach is taken by Lach and Lübbecke (2008) [107].
To achieve this, it is necessary to exploit the special structure present in the graph
Groom for the high school instances at hand.

First note that lectures do not span multiple timeslots. Therefore each timeslot
can be considered completely independently from the others when it comes to the
room assignment. In the following {l, t} will therefore always refer to the timeslot
t that is currently being considered.

In the high school instances, there may be some events which can only fit into
one particular room (these lectures are denoted as singleton lectures – with L1

being the set containing all of these). Additionally some of the rooms have certain
features (like being a room suited for chemistry classes) and some lectures may
only fit into rooms exposing certain features. In this way the rooms can be grouped
by their features into sets Ri, where all rooms in the same group are completely
interchangeable, i. e., if the room is suitable for a certain lecture (not in L1), all
rooms from the same group will also be. Note that each room belongs to exactly
one room group. Let RG be the set of all these room groups. It turns out that in
the instances at hand there are always only a few of these groups (at most 12).

Using the theory set up in Section 2.4 the next step is to show that for a complete
description of the partial transversal polytope only relatively few constraints are
needed:

104 timetabling problems

Corollary 6.2. For the Lectio instances, the room matching polytope for a given timeslot t
is fully described by the constraints ∑l∈N−1(R̄) x{l,t} ≤ |R̄| for the following sets R̄ ⊆ R:

• N(l) ∀l ∈ L1

•
⋃

R̄′∈R̄G R̄′ ∀R̄G ⊆ RG

Proof. Using the results from Lemma 2.14 and Corollary 2.15 it remains to be
shown that L̄ 6= N−1(R̄), for all of the specified R̄, cannot be ν-flat and ν-inseparable.

Assuming L̄ is ν-flat and ν-inseparable. Then ν(L̄) = |N(L̄)| by Lemma 2.13.
Let l ∈ L̄ \ L1. Given furthermore some l′ 6∈ L̄ but with l′ ∈ N−1(N(l)). Then
N(L̄) = N(L̄ ∪ {l′}) contradicting the ν-flatness of L̄. Therefore for R̄ = N(L̄ \ L1)

we have N−1(R̄) ⊆ L̄. Note that R̄ must be the union of some set of room groups
R̄G ⊆ RG. Therefore let L−1 \ N−1(R̄) = L̄1 6= ∅. As all of the lectures in L̄1 only
fit into their respective room in N(L̄1) it has to hold that ν(L̄1) = |N(L̄1)|. And
as these rooms are disjoint from R̄, we also get that ν(L̄ \ L̄1) = |N(L̄)| − |N(L̄1)|
which contradicts the ν-inseparability of L̄.

As the size of room groups RG is very limited, these constraints can easily be
added a priori to the model (for 12 room groups there would be 4095 constraints
per timeslot plus those for the singleton events).

In order to also circumvent the need for optimality cuts, a way to add a lower
bound on the cost of the room matching problem with a relatively small set of
constraints was developed by Sørensen and Dahms (2014) [149]. To establish this
bound, we rely on the concept of graph deficiency.

Definition 6.3. For a bipartite graph G = (L ∪ R, E) the deficiency of a vertex set
L̄ ⊆ L is defined as

def(L̄) = |L̄| − |N(L̄)|.

The deficiency of the entire graph is then defined as

def(G) = max{def(L̄) : L̄ ⊆ L}.

The deficiency is closely tied to the concept of maximum matchings and the
König-Hall Theorem (see Theorem 2.6). For example the deficiency of the graph
will be the number of vertices which cannot be matched:

Theorem 6.4. For G we have ν(G) = |L| − def(G)

Proof. See Lovász and Plummer (2009) [113].

Given the definition of the deficiency this makes it easy to determine the num-
ber of unmatched events within a linear program, already containing the corre-
sponding constraints for the partial transversal polytope. Given a variable deft, the
constraints

∑
l∈N−1(R̄)
{l,t}∈Etime

x{l,t} − deft ≤ |R̄| ∀R̄ ⊆ R

can be used instead of the regular partial transversal polytope constraints in order
to make sure that deft will contain the number of unmatchable lectures in the
considered timeslot t.

6.4 optimization algorithms 105

Next define the graph G≤w
room = (L∪ R, E≤w

room) with E≤w
room = {e ∈ Eroom : we ≤ w}

as the graph with edges of weight at most w. Next, let wi for 0 < i ≤ kw be an
ordering of all edge weights in Groom such that wi < wj for i < j. Then define

awi =

|L| − def(G≤w1
room) if i = 1

def(G≤wi−1
room)− def(G≤wi

room) otherwise

which measure the number of additionally matchable lectures when going from
G≤wi−1

room to G≤wi
room. Now it is possible to show the following lower bound on the

minimum weight maximum matching in Groom for some subset of lectures:

Theorem 6.5. Given the graph Ḡroom(L̄ ∪ R, Eroom) then

∑
0<i≤kw

wiawi

is a lower bound on the minimum weight maximum matching problem in the given graph
Ḡroom.

Proof. This theorem and its proof are also published in Sørensen and Dahms
(2014) [149].

Assume for contradiction that there exists a maximum matching M with a lower
weight, i. e., ∑e∈M we < ∑i>0 wiawi . Let bw denote the number of edges in M of
weight lesser or equal w, i. e., bw = |{e ∈ M : we ≤ w}|. Now let k be the smallest
number such that bwk > ∑0<i≤k awi . Assume such a number did not exist. As M
is a maximum matching we get |M| = bkw = ∑0<i awi . As there is no k with the
desired property this implies bj = ∑0<i≤j awi for any j. Therefore we would get
∑e∈M we = ∑i>0 wiawi , which contradicts the assumption that M was cheaper than
the bound.

As bwk cannot be larger than ν(Ḡ≤wk
room) we get

bwk ≤ ν(Ḡ≤wk
room) = |L̄| − def(Ḡ≤wk

room)

= |L̄| −def(Ḡ≤w1
room) + def(Ḡ≤w1

room)− def(Ḡ≤w2
room) + . . . + def(Ḡ≤wk−1

room)︸ ︷︷ ︸
=0

− def(Ḡ≤wk
room)

= ∑
0<i≤k

awi

which is a contradiction.

Putting all this together we can use this lower bound in our integer program-
ming formulation if we track the deficiency for each of the subgraphs G≤wi

room in a
variable deft,≤wi . Their respective objective values should then be

c(deft,≤wi) =

wi+1 − wi if i < kw

−wi if i = kw

in order to track the lower bound in the problem’s objective function. Note that in
our problem the lowest possible weight is w1 = 0 and therefore we do not need to
account for a factor |L̄| · w1.

106 timetabling problems

l1

l2

r1

r2

1

22

Figure 13: A bad instance for the approximation of the Benders’ optimality cuts

Finally we need to make sure that the deficiencies can be tracked with acceptable
effort. For the graph G≤wkw

room the Corollary 6.2 yields that we can track deft,≤wk with
not too many constraints. Luckily the structure of the Lectio instances make sure
that each G≤wi

room satisfies the conditions of Corollary 6.2, as similar rooms either
have the same weight for a certain lecture, or exactly one room is preferred over
all others, such that the lecture will be either connected to exactly that room (for
small w) or the room will not be treated differently form the others in its group.
Finally this means that the deficiencies can be tracked using the constraints

∑
l∈N−1

G
≤wi
room

(R̄)

{l,t}∈Etime

x{l,t} − deft,≤wi ≤ |R̄| ∀0 < i ≤ kw, ∀R̄ ∈ R≤wi

with

R≤wi = (
⋃

l∈L1,≤wi

{N
G
≤wi
room

(l)}) ∪ (
⋃

R̄G⊆RG

{∪R̄′∈R̄GR̄′})

being the set of relevant room subsets according to Corollary 6.2. Note that the set
of singleton lectures L1,≤wi depends on the current subgraph being considered.

These modifications make it possible to enforce feasibility in the subproblem and
at the same time give a lower bound upon its objective value, without resorting to
creating the Benders’ cuts on the fly. Not having to separate constraints gives the
solver more options for presolving and various other techniques to speed up the
optimization. Therefore these modifications are quite desirable, even though the
objective of the room assignment will not be exact in the master problem.

The method described above only yields an approximation of the true subprob-
lem objective. The following instance is an example, where the lower bound fails
to achieve an exact solution: G = ({l1, l2}∪ {r1, r2}, {{l1, r1}, {l1, r2}, {l2, r1}}} with
edge weights w{l1,r1} = 1 and w{l1,r2} = w{l2,r1} = 2. This graph is illustrated in Fig-
ure 13. Here a minimum weight maximum matching can only achieve an objective
of 4. But for our lower bound we get def(G≤1) = 1 and def(G≤2) = 0, leading to a
bound of 1 · 1 + 2 · 1 = 3.

Furthermore, the additional requirements for the Lectio instances need to be in-
corporated. With the exception of the room-stability constraints this can be achieved
by adding additional variables and constraints to the formulation such that they
only affect the Benders’ master problem. For a more compact presentation only the
modifications for the Benders’ master problem are stated explicitly. For the three
indexed formulation they can also be added easily: as the room assignment is not
directly affected, one simply needs to replace the assignment variables x{l,t} by
the sums ∑{l,r}∈Eroom

x{l,t},{l,r}. The requirements only affecting the Benders’ master
problem can be modeled as follows:

6.4 optimization algorithms 107

idle-timeslots : In order to track the number of idle timeslots we require three
additional types of variables: for each entity a ∈ A and each day T̄ ∈ D
we add the non negative continuous variables xidle↑

a,T̄ and xidle↓
a,T̄ , which shall

give the ordinal index of the last and first timeslot used on that day, as well
as xidle

a,T̄ holding the number of total idle timeslots. The latter variables will
get an objective value of βa, penalizing each idle timeslot. To properly build
the constraints incorporating these variables, it is necessary to assign each
timeslot in a day an ordinal number ord(t) with the first timeslot taking
number 1, the second number 2, and so forth.

Then a correct value of xidle↓
a,T̄ can be ensured via the constraints

|T̄| − (|T̄| − ord(t)) ∑
l∈L(a)
{l,t}∈Etime

x{l,t} ≥ xidle↓
a,T̄ ∀a ∈ A, T̄ ∈ D, t ∈ T̄.

Similarly the constraints to ensure the correct values for xidle↑
a,T̄ are

ord(t) ∑
l∈L(a)
{l,t}∈Etime

x{l,t} ≤ xidle↑
a,T̄ ∀a ∈ A, T̄ ∈ D, t ∈ T̄.

Now these variables can be used to ensure that the xidle
a,T̄ are tracking the total

idle timeslots via the constraints

1 + xidle↑
a,T̄ − xidle↓

a,T̄ − ∑
l∈L(a),t∈T̄
{l,t}∈Etime

x{l,t} = xidle
a,T̄ ∀a ∈ A, T̄ ∈ D.

days-off : To count the number of days off, we use variables xd-off
a,T̄ ∈ R+ counting

whether day T̄ ∈ D is used by entity a ∈ A or not. They get objective values
of −γa. Their correct values can be ensured with the constraints

∑
l∈L(a),t∈T̄
{l,t}∈Etime

x{l,t} + xd-off
a,T̄ ≤ 1 ∀a ∈ A, T̄ ∈ D.

As some entities have a hard limit Fa of off-days, these shall be incorporated
via the constraints

∑
T̄∈D

xd-off
a,T̄ ≥ Fa ∀a ∈ A.

day-conflicts : Let L̄ be the set of lectures forming one class. Then one needs
to add the constraints

∑
l∈L̄,t∈T̄
{l,t}∈Eroom

x{l,t} ≤ 1 ∀T̄ ∈ D

for each of the classes to ensure that at most one of its lectures is scheduled
per day.

108 timetabling problems

neighbor-days-for-classes : For these constraints we need to track the lec-
tures of a class L̄ over consecutive days, i. e., over the pairs Monday-Tuesday,
Tuesday-Wednesday, and so forth. Let Dcons ⊆ 2T be the set of timeslots of
consecutive days, such that T̄ ∈ Dcons consists of the timeslots of two consec-
utive days. Now introduce variables xnday

L̄,T̄ ∈ R+ tracking whether there are
two lectures within the neighboring days T̄ ∈ Dcons or not. They are assigned
an objective value of ζ. To make sure that they take their proper values, add
the constraints

∑
t∈T̄,l∈L̄
{l,t}∈Etime

x{l,t} − xnday
L̄,T̄ ≤ 1 ∀T̄ ∈ Dcons.

The hard constraints on the amount of neighbor days can be included via
constraints

∑
T̄∈Dcons

xnday
L̄,T̄ ≤ NL̄

for each of the classes L̄.

teacher-daily-workload : The upper limits for lectures on each day can eas-
ily be modeled using constraints

∑
l∈L(a),t∈T̄
{l,t}∈Etime

x{l,t} ≤ pa ∀a ∈ At, T̄ ∈ D.

In order to model the penalties for days with only a single lecture, introduce
variables xsingle

a,T̄ ∈ {0, 1} indicating whether there is only a single lecture on
that day or not. They receive an objective value of ηa. To properly link them
to the rest of the model we use the variables xd-off

a,T̄ from the day-off constraints,
in addition to the time assignment variables:

2− ∑
l∈L(a),t∈T̄
{l,t}∈Etime

x{t,l} − 2xd-off
a,T̄ ≤ xsingle

a,T̄ ∀a ∈ A, T̄ ∈ D.

days-off-stability : To ensure the stability of off days over a biweekly schedule,
first let D1 ⊂ D and D2 ⊂ D denote the set of days in the first and second
week respectively. Then, using the variables counting the off days xd-off

a,T̄ , add
the constraints

∑
T̄∈D1

xd-off
a,T̄ − ∑

T̄∈D2

xd-off
a,T̄ ≤ 1 ∀a ∈ A

and

∑
T̄∈D2

xd-off
a,T̄ − ∑

T̄∈D1

xd-off
a,T̄ ≤ 1 ∀a ∈ A

to ensure a maximal imbalance of 1 between the weeks.

class-stabillity : To ensure a low imbalance between weeks for the lectures L̄
of some class, introduce a variable xstbl

L̄ with an objective value of ι, counting

6.4 optimization algorithms 109

the number of imbalanced lectures. Then let T̄1 ⊂ T and T̄2 ⊂ T be the set of
timeslots in week one and two, respectively. Now the new variables will be
connected to the rest of the model via the constraints

∑
l∈L̄,t∈T̄1

{l,t}∈Etime

x{l,t} − ∑
l∈L̄,t∈T̄2

{l,t}∈Etime

x{l,t} − 1 ≤ xstbl
L̄

and

∑
l∈L̄,t∈T̄2

{l,t}∈Etime

x{l,t} − ∑
l∈L̄,t∈T̄1

{l,t}∈Etime

x{l,t} − 1 ≤ xstbl
L̄ .

The only part missing now are the room-stability constraints. As they affect the
room assignment such that they destroy the matching structure, they cannot be
easily incorporated into the Benders’ master problem. As a pragmatic solution
we decided to ignore them in the master problem and only add them into the
subproblem. This way of course the decomposition will not necessarily yield an
overall optimal solution. Also note that this way the subproblem will likely not
be integral anymore, requiring integrality constraints to be imposed on the room
assignment variables y{l,r}.

The three indexed formulation on the other hand can easily incorporate the
room-stability constraints. Again the constraints will be formulated only in terms of
the Benders’ subproblem variables y{l,r} but can easily be ported over to the three
indexed formulation by instead using the sums ∑{l,r}∈Etime

y{l,t},{l,r}.

room-stability : For each class L̄ we will need variables yroom-used
L̄,r ∈ {0, 1} to

track if room r was used by the class, as well as a variable yroom-stbl
L̄ ∈ R+ to

count the number of violations of the room stability. The later variables will
have an objective value of ε.

To make sure that the yroom-used
L̄,r variables take correct values, the following

constraints can be used

∑
l∈L̄

{l,r}∈Eroom

y{l,r} ≤ |L̄|yroom-used
L̄,r ∀r ∈ R.

A stronger LP relaxation can be achieved with constraints

y{l,r} ≤ yroom-used
L̄,r ∀l ∈ L̄, ∀{l, r} ∈ Eroom.

The algorithm used for the experiments uses the former variant, as it was
described in Sørensen and Dahms (2014) [149]. As the subproblem will turn
out to not be the bottleneck in the computations this choice does not affect
overall performance in a relevant way.

Finally the following constraint needs to be added for each class to correctly
count the number of room stability violations:

∑
r∈R

yroom-used
L̄,r − 1 ≤ yroom-stbl

L̄ .

110 timetabling problems

Modifications for the Udine instances

The additional requirements of the Udine instances need to be included in the
model. As with most of the Lectio requirements, they only affect the matching of
lectures to timeslots so they can be part of the Benders’ master problem. Again
only the modifications for the Benders’ master problem are stated explicitly and
the variants for the three indexed formulation follow from replacing the assign-
ment variables x{l,t} by the sums ∑{l,r}∈Eroom

x{l,t},{l,r}. Each requirement can be
formulated using additional variables and constraints as follows.

min-working-days : Given a set of lectures L̄ ⊆ L that form a course and should
be spread over at least u days. For each of these courses the following addi-
tions need to be made to the model: in order to capture the number of days
that were used less than u, add a variable xmwd1 ∈ R+. This variable gets an
objective value of 1. Also add variables xmwd2

T̄ ∈ {0, 1} for each set of times-
lots T̄ ∈ D belonging to the same day, which model whether that day is used
by one of the course’s lectures or not. Now these are linked to the rest of the
master problem via the constraints

xmwd2

T̄ ≤ ∑
l∈L̄,t∈T̄
{l,t}∈Etime

x{l,t} ∀T̄ ∈ D

which ensure that xmwd2

T̄ can only be set to 1 if there is at least one lecture of
the respective curriculum scheduled to one of the timeslots T̄. Finally these
variables are then linked with

u− ∑
T̄∈D

xmwd2

T̄ ≤ xmwd1

T̄

to the xmwd1

T̄ variable to assert that the penalty is paid for each missing day.

student-min-max-load : Let L̄ ⊆ L be the set of lectures forming a curriculum
and p be the minimum as well as q the maximum number of lectures that
should be scheduled on any day from L̄. The penalty here can be captured
using a similar mechanism as the one for the MinWorkingDays. For each
curriculum we will need two variables xabove

T̄ ∈ R+ and xbelow
T̄ ∈ R+ to

capture for each day the number lectures above or below the respective limit.
These will have an objective value of 1. To link them to the other variables,
add the constraints

p− ∑
l∈L̄,t∈T̄
{l,t}∈Etime

x{l,t} ≤ xbelow
T̄ ∀T̄ ∈ D

and

∑
l∈L̄,t∈T̄
{l,t}∈Etime

x{l,t} − q ≤ xabove
T̄ ∀T̄ ∈ D

isolated-lectures : Let again L̄ ⊆ L be the set of lectures forming a curricu-
lum. For each curriculum, add variables xiso

t ∈ R+ for each timeslot t ∈ T
representing whether there is an isolated lecture in the respective timeslot or

6.4 optimization algorithms 111

not. Each of those gets an objective value of 1. To link them to the assignment
variables, let SP(t) be the set of directly preceding or succeeding timeslots of
t. This way we need to add the constraints

∑
l∈L̄

{l,t′}∈Etime

x{l,t′} − ∑
l∈L̄,t∈SP(t′)
{l,t}∈Etime

x{l,t} ≤ xiso
t′ ∀t′ ∈ T.

These additional components add some complexity to the master problem and
are exemplary for a multitude of possible other modifications that could be done,
depending on the actual problem at hand.

Additionally to these modifications on the master problem and the improve-
ments of the Basic Benders’ algorithm explained in Chapter 4, a method to pre-
generate some of the feasibility cuts was constructed. This was motivated by the
success that the heuristic optimality cuts showed for the Lectio high school in-
stances (see later in Section 6.5). As it cannot be expected to be generally feasible
to pre-generate all feasibility cuts it is important to find a relevant sample of them.
Here, the following cuts were used:

∑
l′∈N−1(N(l))
{l′,t}∈Etime

x{l′,t} ≤ |N(l)| ∀{l, t} ∈ Etime.

These cuts have the property that they are already sufficient, if the underlying
room matching graph has an ordered structure (where, e. g., each lecture fits into
all rooms of sufficient size and no additional requirements on the room are im-
posed). This condition is usually not satisfied completely but can be assumed to
hold for at least a large part of the lectures, making these cuts a reasonable choice
for pre-generation.

Modifications for RWTH Aachen University

In order to focus on the hypergraph structure of the subproblem, no further re-
quirements were added to the problem (as was done for the Udine and the Lectio
instance). For all instances, those from RWTH Aachen as well as the generated
ones, three different solvers were used: the three indexed formulation, as well as
two combinatorial Benders’ algorithms, of which one used pre-generated Benders’
cut (which were generated in the same fashion as for the Udine instances before).

The three indexed formulation is very similar to the one defined earlier in this
section. Due to the hypergraph notation only a few notational changes are re-
quired:

min ∑
etime∈Etime

eroom∈Eroom

(wetime − 100)xetime,eroom

s.t. ∑
l∈etime∈Etime

l∈eroom∈Eroom

xetime,eroom ≤ 1 ∀l ∈ L

∑
t∈etime∈Etime

r∈eroom∈Eroom

xetime,eroom ≤ 1 ∀t ∈ T, ∀r ∈ R

∑
l∈econf

∑
l∈etime∈Etime

t∈etime
l∈eroom∈Eroom

xetime,eroom ≤ 1 ∀econf ∈ Econf, ∀t ∈ T

112 timetabling problems

xetime,eroom ∈ {0, 1} ∀l ∈ L, ∀etime∈Etime,l∈etime
∀eroom∈Eroom,l∈eroom

.

Note that no weights for the room matching are specified in the objective. This
shall keep the model comparable to the combinatorial Benders’ algorithms, for
which no optimality cuts have been developed within this thesis.

The Benders’ algorithms have the master problem formulation

min ∑
etime∈Etime

(wetime − 100)xetime

s.t. ∑
l∈etime∈Etime

xetime ≤ 1 ∀l ∈ L

∑
l∈econf

∑
l∈etime∈Etime

t∈etime

xetime ≤ 1 ∀econf ∈ Econf, ∀t ∈ T

x ∈ {0, 1}|Etime|.

and the subproblem is calculated as a maximum hypergraph matching using the
formulation

max ∑
eroom∈Eroom

yeroom

s.t. ∑
l∈eroom∈Eroom

yeroom ≤ 1 ∀etime ∈ Mtime, ∀l ∈ etime

∑
r∈eroom∈Eroom
t∈etime∈Mtime
∃l,l∈etime∧l∈eroom

yeroom ≤ 1 ∀r ∈ R, t ∈ T

y ∈ {0, 1}|Eroom|
+ .

where Mtime is the current master problem solution. If an optimal subproblem
solution does not cover all lectures from Mtime, feasibility cuts are separated as
described in Section 4.2, using the RISS algorithm.

For all hypergraph instances also the feasibility cut pre-generation, that was
introduced previously for the Udine instances, was tried out. Note that these cuts
can be used in a similar way as before (making sure that the hypergraph structure
is treated correctly):

∑
l′∈N−1(N(l))
t∈etime∈Etime

l′∈etime

x(l′,T̄) ≤ |N(l)| ∀etime ∈ Etime, l ∈ etime, ∀t ∈ etime.

experiments

Lectio high school instances

The results presented here are those run for the previous publication by Sørensen
and Dahms (2014) [149]. For solving the integer programming formulations Gurobi
5.0.1 was used. The experiments were run on a machine with an Intel Core i7
930@2.80 GHz CPU and 12GB of RAM, running Windows 8, 64 bit. Gurobi was
accessed using its C# interface (employing C# 4.5) and it was run with default
parameter settings.

The following optimization algorithms were compared:

6.5 experiments 113

ALNS 3 indexed T SD T SDRoomLB

Solution found 100 99 100 100

Best solution 77 2 8 18

Bound found - 46 79 80

Best bound - 13 19 49

Table 1: Summary of algorithm objectives on the Lectio instances

3 indexed : The three indexed formulation. This variant was allowed a time limit
of 7200 seconds per instance. This is the only exact method for the entire
problem.

T SDRoomLB : This variant uses the Benders’ decomposition (two stage decompo-
sition) with adding all relevant feasibility cuts beforehand as well as the con-
straints for the lower bound on the subproblem objective. Note that by the
construction of the formulation it is necessary to run both the master and the
subproblem only once. The master problem is constrained by a time limit of
6480 seconds and the subproblem by 720 seconds.

T SD : This variant is equivalent to T SDRoomLB except for it not using the lower
bound. The time limits here are the same as for T SDRoomLB.

alns : This is the adaptive large neighborhood search heuristic currently used by
Lectio for serving its customers. The heuristic is run 10 times, each time with
a time limit of 240 seconds. The best of the 10 results is finally taken.

The results of the experiments are summarized in Table 1. The table reports for
each algorithm the number of times it found a solution and bound, as well as the
times the found solution / bound was the best of the algorithm ensemble (which
does not necessarily mean optimal). For more detailed result tables please refer to
Sørensen and Dahms (2014) [149].

From a practitioners perspective it quickly becomes clear that the ALNS heuristic
does the best job in providing good solutions and is therefore well suited for most
applications. From the integer programming based methods T SDRoomLB clearly
outperforms the others, with the three indexed formulation providing the poorest
results. This indicates that our “static decomposition” approach might be a good
direction for future research into exact optimization algorithms for timetabling
problems.

In the future it will be interesting to find out whether it is possible to have a
way to model the subproblem cost exactly in the master problem without using
a cutting plane method. Furthermore, finding a way of including the room stabil-
ity in a similar way would be very desirable. Also finding ways to improve the
performance of the master problem of T SDRoomLB would be helpful, as in the ex-
periments Gurobi here only achieved an average optimality gap of 44.3% and only
reported optimality for 4 (small) instances.

114 timetabling problems

Udine instances

For evaluating the different optimization methods on the Udine instances, Gurobi
5.6.3 was used. The separation algorithms for the Benders’ cuts as well as the
model generating code were implemented in Scala (using Scala version 2.11.4) and
accessed Gurobi via its Java interface. This code is available on GitLab at

https://gitlab.com/florian.dahms/TimetablingSolver

The experiments were run on machines with Intel Core i7-2600 CPUs with 16GB
of RAM. The machines run on openSUSE 13.1 (x86_64) and the 3.11.10 Linux ker-
nel. Gurobi was set to single threaded mode in all experiments. All experiments
were run with a time limit of 3600 seconds. Gurobi was configured to stop when
reaching an optimality gap of 1%.

The Udine instances were used in two different variations. In one the room
capacities are modeled as hard constraints, i. e., there are no edges between lectures
and rooms with insufficient size in Groom. Here no edge weights are given for
the room assignment and therefore there is no need for optimality cuts in the
Benders’ algorithms. In the other variant the capacities are modeled using edge
weights in Groom corresponding to the amount of missing seats in the respective
lecture room, resulting in turning the capacity requirements into soft constraints.
In both variants, rooms which are explicitly forbidden for a certain lecture were not
connected by an edge in Groom (i. e., the graph cannot be expected to be a complete
bipartite graph). The results on the two variations as well as on the instance subsets
“ITC” and “Erlangen” are reported separately, resulting in a total of four sets of
experiments (abbreviated as “ITC (hard)”, “ITC (soft)”, “Erlangen (hard)”, and
“Erlangen (soft)”).

The Benders’ decomposition is evaluated in three different variants. In one set-
ting, the feasibility cuts are generated by calculating a maximum matching in the
room assignment and, if infeasibility is detected, using the RISS algorithm for
calculating stronger cuts. In the second setting the feasibility cuts are created us-
ing the classical Benders’ algorithm by employing the subproblems Farkas vector
in case of infeasibility. Thirdly a variant including pre-generated cuts was tested.
This variant was used together with the feasibility cuts from the RISS algorithm.
In the soft room assignment cases, the optimality cuts are generated by using the
subproblems dual values and the connected components algorithm to arrive at
smaller optimality cuts, using an α value for each lecture (as each lecture is sched-
uled only once, there is no need to have α values for each combination of lecture
and timeslot). The classical Benders’ algorithm with a single α value is not used as
such an implementation turned out to be too numerically unstable for providing
meaningful results. For further details on these algorithms the reader may refer to
Chapter 4.

The Benders’ decomposition is only run on integral solutions of the master prob-
lem, not on fractional ones, as the addition of “lazy cuts” (removing integral points)
at solver stages other than the discovery of a new integral solution seems to be un-
supported by Gurobi.

For the three indexed formulation, Gurobi was run with default settings (apart
from the already mentioned common settings for all algorithms). For the Benders’
decompositions, Gurobi’s “MIPFocus” parameter was set to 1, in order to provide
more master problem solutions for discovering necessary Benders’ cuts.

https://gitlab.com/florian.dahms/TimetablingSolver

6.5 experiments 115

Instances 3 ind. B.s’ (RISS) B.s’ (Farkas) B.s’ (PreGen)

ITC (hard) 26.23 10.02 19.69 4.37

ITC (soft) 50.54 6.35 8.15 3.82

Erlangen (hard) 131.75 693.57 2503.25 1355.66

Erlangen (soft) 248.17 3453.06 3600.00 3600.00

Table 2: Median running times in seconds on the Udine instances

Instances 3 ind. B.s’ (RISS) B.s’ (Farkas) B.s’ (PreGen)

ITC (hard) 1 4 0 16

ITC (soft) 1 2 9 9

Erlangen (hard) 5 1 0 0

Erlangen (soft) 5 0 1 0

Table 3: “Best algorithm” statistics on the Udine instances

In the following, some core statistics on the performance of the different algo-
rithms will be examined. More detailed information (such as the explicit run times
on each instance) is given in Appendix A.

Table 2 shows the median running times in seconds for the three indexed for-
mulation, the Benders’ algorithm with maximum matching and RISS, the Benders’
algorithm with Farkas vector based feasibility cuts, and the Benders’ algorithm
with pre-generated cuts. Note that median running times are better suited to ac-
count for outliers (such as unsolved instances, hitting the 3600 seconds time limit)
than mean running times would be, as the choice of the time limit would heavily
impact the means.

Table 3 displays how often each algorithm had the best performance of the three.
Best performance is measured as the lowest runtime, and in case no algorithm
finished within the time limit, as the lowest remaining optimality gap.

Figures 14 and 15 show runtime profiles of the algorithms on the “ITC” and
“Erlangen” instances. In each profile the x-axis is used for the solver runtime and
the y-axis to depict the number of instances solved in at most the corresponding
amount of time. Note that the x-axis uses a logarithmic scale to facilitate a better
resolution on the small time spans while showing the entire 3600 seconds period.

The statistics indicate that, using the stated measures, the Benders’ methods out-
perform the three indexed formulation on the “ITC” instances, while performing
badly on the “Erlangen” instances. The good performance on the “ITC” instances
might be explained by the much smaller master problem when compared with
the three indexed formulation. The solver can solve the LP relaxations much more
quickly and work through more nodes of the branch & bound tree within the
same amount of time than with the larger model. To a certain regard the three in-
dexed formulation can compensate this disadvantage by using more sophisticated
techniques of the MILP solver (such as better preprocessing, heuristics, and cut-
ting planes), some of which are not available in the Benders’ formulation due to
the subproblem being a black box to the solver. But these advantages seem to be
insufficient to really compete with the master problem being much smaller.

116 timetabling problems

0

5

10

15

20

1 10 100 1000

In
st

an
ce

s
so

lv
ed

Time in seconds

ITC instances, hard room assignment

three indexed
Benders’ (RISS)

Benders’ (Farkas)
Benders’ (PreGen)

0

5

10

15

20

1 10 100 1000

In
st

an
ce

s
so

lv
ed

Time in seconds

ITC instances, soft room assignment

three indexed
Benders’ (RISS)

Benders’ (Farkas)
Benders’ (PreGen)

Figure 14: Runtime profile on “ITC” instances

6.5 experiments 117

0

1

2

3

4

5

6

1 10 100 1000

In
st

an
ce

s
so

lv
ed

Time in seconds

Erlangen instances, hard room assignment

three indexed
Benders’ (RISS)

Benders’ (Farkas)
Benders’ (PreGen)

0

1

2

3

4

5

6

1 10 100 1000

In
st

an
ce

s
so

lv
ed

Time in seconds

Erlangen instances, soft room assignment

three indexed
Benders’ (RISS)

Benders’ (Farkas)
Benders’ (PreGen)

Figure 15: Runtime profiles on “Erlangen” instances

118 timetabling problems

When comparing the variations of the Benders’ algorithm, it seems that using
the maximum matching with RISS for generating the feasibility cuts seems to yield
a slight advantage over the Farkas vector variant, when running on the instances
without a subproblem objective while being roughly comparable when the soft
room constraints were used.

When looking more closely at the “Erlangen” instances, one discovers that here
each lecture only has a very restricted set of possible rooms available in Groom.
This massively reduces the advantage of the Benders’ algorithm, as now its size
will be closer to the three indexed formulation, which might be an explanation of
the worse performance on these instances.

RWTH Aachen instances

The experimental setting here is the same as for the Udine instances: machines
with Intel Core i7-2600 CPUs with 16GB of RAM, openSUSE 13.1 (x86_64), and
the 3.11.10 Linux kernel. Again Gurobi was set to single threaded mode in every
run. The compared algorithms are the three indexed formulation, a combinatorial
Benders’ algorithm with the hypergraph room matching as the subproblem and
the same Benders’ algorithm, but with pre-generated feasibility cuts in the master
problem. These pre-generated cuts are generated in the same way as for the Udine
instances. The implementation resides within the same code base as the solver for
the Udine instances and can be found in the same repository. An optimality gap
of 1% was configured to be sufficient for Gurobi to report optimality.

For the artificially generated instances a time limit of 3600 seconds was set. As
the RWTH instances are significantly larger, they were run with larger time limits.
The summer term instance was run with a time limit of 259200 seconds (three days)
and the winter term instance (which is larger than the summer term instance) had
a time limit of 518400 seconds (six days).

In Table 4 the results on the two RWTH instances are shown. The table contains
the total time each solver ran, the remaining optimality gap at termination (note
that the solvers terminated at a gap of less than 1%), the time needed for solving
the root node and the number of nodes explored in the branch & bound tree. For
the winter term instances no solver was capable of proving a proper optimality
gap, despite the large running time. The three indexed formulation did produce a
non trivial heuristic solution but did not finish solving the root node. The other two
solvers where able to solve the LP relaxation but only found the trivial solution.

Finally the results for the artificial hypergraph timetabling instances are given.
Table 5 shows the median remaining optimality gap (note that the solvers did not
terminate for most instances, so the median runtimes are always 3600 seconds) for
the different instance sizes. Table 6 show a comparision, how often one of the algo-
rithms outperformed the others in terms of runtime or remaining optimality gap
(if the time limit was reached for all algorithms). Figures 16 and 17 show graphs
indicating how many instances could be solved with up to a certain remaining
optimality gap.

6.5 experiments 119

3 ind. B.s’ (RISS) B.s’ (PreGen)

summer term instance

Time 259200 194635 187377

Gap 0.0127 0.0097 0.0060

Time (root node) 4462 4710 1893

Nodes explored 0 1702 1302

winter term instance

Time 518400 518400 518400

Gap ∞ ∞ ∞

Time (root node) 518400 314113 362225

Nodes explored 0 49 33

Table 4: Results on the RWTH instances

Instances 3 ind. B.s’ (RISS) B.s’ (PreGen)

80 lectures 0.0322 0.0332 0.0287

100 lectures 0.3142 0.1335 0.1259

200 lectures 0.5633 0.5036 0.5095

500 lectures 0.7283 0.6569 0.6467

Table 5: Median remaining optimality gap in percent on the artificial hypergraph
timetabling instances

Instances 3 ind. B.s’ (RISS) B.s’ (PreGen)

80 lectures 14 7 29

100 lectures 0 20 30

200 lectures 0 22 28

500 lectures 0 28 22

Table 6: “Best algorithm” statistics on the artificial hypergraph timetabling instances

120 timetabling problems

0

10

20

30

40

50

0 2 4 6 8 10

In
st

an
ce

s
so

lv
ed

Optimality gap in percent

Artificial hypergraph timetabling instances (80 lectures)

three indexed
Benders’

Benders’ (PreGen)

0

10

20

30

40

50

0 10 20 30 40 50

In
st

an
ce

s
so

lv
ed

Optimality gap in percent

Artificial hypergraph timetabling instances (100 lectures)

three indexed
Benders’

Benders’ (PreGen)

Figure 16: Remaining optimality gap on artificial hypergraph timetabling instances with
80 and 100 lectures

6.5 experiments 121

0

10

20

30

40

50

0 20 40 60 80 100

In
st

an
ce

s
so

lv
ed

Optimality gap in percent

Artificial hypergraph timetabling instances (200 lectures)

three indexed
Benders’

Benders’ (PreGen)

0

10

20

30

40

50

0 20 40 60 80 100

In
st

an
ce

s
so

lv
ed

Optimality gap in percent

Artificial hypergraph timetabling instances (500 lectures)

three indexed
Benders’

Benders’ (PreGen)

Figure 17: Remaining optimality gap on artificial hypergraph timetabling instances with
200 and 500 lectures

122 timetabling problems

conclusions

This chapter has shown how the theoretical results given in Chapter 4 about Ben-
ders’ type decompositions with matchings as subproblems can be successfully ap-
plied to improve integer programming models in educational timetabling prob-
lems. The decomposition can result in an improved algorithm performance, if the
resulting Benders’ master problem is significantly smaller than the original formu-
lation (which, e. g., is not the case for the “Udine – Erlangen” instances). Improve-
ments of the classical Benders’ decomposition, like strengthened or pre-generated
cuts, can also have a positive impact on the algorithm performance. The method
can yield better performance in both cases, where the subproblem is a matching
on a regular or on a hypergraph (which need to be bipartite in both cases). Also a
method to approximate the optimality cuts, without the need for a separation algo-
rithm, was presented for a specific high school timetabling problem, which turned
out to be an improvement upon the previous algorithm lacking this feature.

These results indicate that for timetabling applications Benders’ decomposition
can be a good method of choice to create better optimization algorithms. For the
future there exist several directions into which an interested researcher might want
to look:

• A major drawback of implementing the Benders’ decomposition with a sepa-
ration algorithm is, that the underlying MILP solver can not properly antici-
pate the overall structure of the problem (given that the separation algorithm
is provided to it as a black box method, as is usually the case with the major
MILP solvers). Therefore the solvers heuristics can have some serious prob-
lems with finding good solutions for the master problem. This drawback
could be circumvented with tailoring existing heuristics to the problem struc-
ture or inventing new, specialized heuristics for this purpose. While meta
heuristics for timetabling problems are well studied, an interesting direction
would be to construct heuristics that are generically suitable for Benders’ de-
compositions exhibiting certain structures (such as matching).

• For the hypergraph instances it turns out that the pre-generated cuts do not
contribute a significant improvement in the algorithm performance, which
might be attributed to the fact that the cuts are not strong enough if the
underlying structure is based upon a hypergraph matching. To circumvent
these drawbacks one can search for cuts which can be easily pre-generated
and turn out to be stronger in the hypergraph setting.

• If the subproblem is a hypergraph, the Benders’ optimality cuts cannot easily
be carried over to the new, nonlinear subproblem. Finding a proper way to
do so would be a major contribution and likely have further impact on other
combinatorial Benders’ algorithms, where such a method is desired. Even
some kind of approximation, akin to the one developed for the Lectio high
school instances, would mean a significant step forward.

• The timetabling applications are a narrow set of problems where a match-
ing structure can be found. As matchings are a very general concept it is
likely that similar structures can be found in other applications. It would be
a relevant contribution to identify such problem classes, or even construct a
method to automatically detect the relevant structures within a given integer

6.6 conclusions 123

program. Also the algorithm implementations used for the experiments are
all tailored towards the respective timetabling problems. When enough simi-
lar problems can be found a more generic implementation of these algorithm
will be desirable in order to apply to more problems.

7
T H E M U LT I - S TA G E T R A I N F O R M AT I O N P R O B L E M

An important step in railway operations is the formation of trains. In this chapter
we will look at a particular train formation problem, called the multi-stage train
formation problem (MSTF), that is inspired by the operations currently performed
at the Hallsberg Rangerbangård hump yard. The MSTF was the original inspiration
for the heterogeneous aggregation concept (see Chapter 5) and is now a good
showcase for a successful application of this technique. First an introduction into
the problem will be given. Then we develop a column generation formulation
for the problem that is capable of solving the problem in practice. Next we will
reverse engineer the column generation formulation into a compact formulation.
Finally it will be shown how the column generation formulation is applicable for
heterogeneous aggregation. Unlike the other application chapters, this chapter will
not feature computational experiments. Experimental results are available in the
publications this chapter is based upon [34,36]. Note that till now no computational
study has been performed regarding the application of heterogeneous aggregation
towards the MSTF.

The MSTF was originally introduced by Bohlin et al. in 2011
[32,33]. Some results

in this chapter have already been published by the author of this thesis and the
corresponding co-authors Markus Bohlin, Holger Flier, Sarah Gestrelius and Matúš
Mihalák [34–36].

introduction

When thinking about railway freight operations one often imagines a train being
loaded at its origin and then going all the way to its destination where the freight
is cleared. This operational mode, called full train load transportation, represents
one of the two main services which are usually provided by rail freight companies.
The other one is full car load transportation. Here trains are formed of cars with
different origins and destinations. Each car has to go through a network of different
railway lines. Here the trains need to be reformed on multiple occasions. This is
done in classification yards (also known as marshalling or shunting yards). Most
classification yards are so called hump yards.

A hump yard usually consists of four parts: an arrival yard, a hump, a classi-
fication bowl and a departure yard (see Figure 18a). The arrival and departure
yard, as well as the classification bowl, each consist again of several tracks (arrival,
departure, and classification tracks).

The operations explained next are taken from the Hallsberg Rangerbangård
hump yard but they are applicable to other yards as the classification procedures
are the same or similar for many yards. Trains coming to the yard arrive at the
arrival yard, where the cars and their engine are decoupled and inspections are
performed. The cars wait there until it is their time to be pushed over the hump,
which is an elevated part of the hump yard. From there the cars roll into the clas-
sification bowl, guided by automated switches, onto their respective classification
track. Here the cars are coupled into outbound trains and a brake test is performed.

125

126 the multi-stage train formation problem

Arrival Yard Classification Bowl Departure YardHump Brakes

(a) A schematic layout of a hump yard.

ti tg

engine decoup.
inspections

decoupling

Arrival Yard

roll in

tb

roll out engine coup.

tdepb

departure

Classification Bowl Departure Yard

coupling
brake test

Line Line

arrival

Hump

(b) Activities performed on a single car from its arrival at the yard with a certain train via
roll-in to the classification bowl, roll-out, and finally departure as part of a new train

Figure 18: Typical layout of a hump yard, and activities performed on each car pass-
ing through the yard (the pictures were originally published by Bohlin et al.
(2015) [36])

Note that on each classification track only one train can be formed at any given
point of time. After the last car of an outbound train has arrived at the classification
track, it can be pulled out into the departure yard, where an engine is coupled to
it. Again the cars wait here until their designated departure time. Note that several
cars might already be grouped by having the same incoming and outbound train.
To avoid overhead we can treat this car group as a single joined car. Therefore the
terms car and car group will be used interchangeably.

If cars arrive long before the departure time of their outbound train, they will
spent a long time in the yard. Therefore it occurs that cars of more outbound trains
need to be present in the classification bowl than there are classification tracks. To
accommodate this issue, one or more classification tracks are reserved for cars of
trains that are currently not being formed. From these – so called mixing tracks –
the cars are periodically pulled out and rolled in over the hump again, in order
for the cars to reach their classification track once the formation of their train
has started. Of course a car might be placed on the mixing tracks several times,
depending on the schedule. The classification tracks that are not used as mixing
tracks will be denoted as formation tracks.

Our focus will be on the procedures in the classification bowl, thus the assump-
tion is that the schedules for the arrival and departure yard are already fixed. Also
the times when cars are pulled out from the mixing tracks (these times are called
periods) are predetermined. Now the free parameters are:

• Which outbound train should be formed on which formation track?

• Should a car be sent to the track of its outbound train or to a mixing track?

• If a car is placed on a mixing track, and the mixing track is pulled out, shall
it be sent back to the mixing track?

While making these decisions it must be ensured, that

• two cars of different outbound trains do not share a formation track

• an outbound train is only formed on a track that has sufficient length (as the
lengths might differ)

7.2 related work 127

• the lengths of the cars on a mixing track do not exceed the length of the
mixing track

• an outbound train is fully formed at the time it is scheduled to leave for the
departure yard.

Each time a car is rolled in over the hump, the involved equipment like switches
and brakes is worn down a little. Furthermore this operation consumes time as
the cars need to be coupled and decoupled again. Our goal is to keep these costs
as small as possible, which means minimizing the number of cars that need to be
pulled back from a mixing track and rolled back in. All other roll-in operations
cannot be avoided as every car needs to be rolled in at least once.

Solving MSTF turns out to be NP-complete by a reduction from the list-coloring
problem on interval graphs [32,33]. The list-coloring in turn is a modification of the
classical graph coloring problem where each vertex may only receive a color from
a predetermined set of colors that may vary for each vertex. This problem is NP-
complete even if restricted to interval graphs and even if the lists are nested (i. e.,
each list must contain all lists of smaller cardinality) [30,37].

Now that the basic idea of MSTF is outlined it is time to introduce the proper
notation to describe an instance of this optimization problem and to derive formal
definitions of the constraints and objectives. But beforehand a brief overview of
related literature will be given.

related work

Apart from the previous publications [32–36] upon which parts of this chapter are
based, there exists a considerable amount of research regarding railway related
problems. Some of these are very early applications of operations research tech-
niques. A good overviews about railway operations in general is given by Nemani
and Ahuja (2011) [124]. Good shunting specific overviews are given by Gatto et al.
(2009) [78] and Boysen et al. (2012) [39].

In the following part a brief overview on the literature regarding related prob-
lems shall be given. These publications do not cover the exact problem definition
studied in this chapter but are in some way related.

Blocking problems

In the blocking problem, optimization happens on a more macroscopic level. The
goal is to determine transportation plans for the entire railway network. Conse-
quently one does not focus heavily (if at all) on the internal operations of the
shunting yards. These problems can be seen as the “bigger picture” into which
other shunting problems and the MSTF are embedded. Approaches for solving
variants of the blocking problem have been studied by

bodin et al . (1980) [31]

An early description and mathematical model for the blocking problem.

assad (1993) [14]

A dynamic programming approach.

128 the multi-stage train formation problem

van dyke (1986) [159]

A successive shortest path method.

keaton (1992) [101]

A mixed integer programming approach alongside a Lagrangean relaxation
method.

huntley et al . (1995) [95]

A simulated annealing meta heuristic.

gorman (1998) [82]

A genetic algorithm and tabu search meta heuristic.

newton et al . (1998) [126]

An integer programming approach based on column generation.

barnhart et al . (2000) [19]

Another column generation approach where a Lagrangean relaxation tech-
nique is used to solve the subproblems.

Single-stage shunting problems

The single-stage shunting problems do not allow pulling back cars over the hump.
Therefore all cars are rolled in only once and will be formed directly afterwards
on the formation track they were placed upon. Such settings are quite restrictive
and can often only provide limited value for practical applications. On the other
hand looking at simplified problem formulations often helps in deriving valuable
theoretical lessons about the problem structure.

dahlhaus et al . (2000) [53]

Introduction into the so called train marshalling problem. This is a single-
stage shunting problem where multiple trains may be formed on the same
formation track. The track capacity is assumed to be infinite and the objective
is to use the minimal amount of formation tracks. The problem is shown to
be NP-complete by reduction from numerical matching with target sums.

beygang et al . (2010) [28]

The online version of the train marshalling problem is analyzed, where the
destinations of the incoming trains are disclosed only when they arrive at the
yard. The report shows that there exists a lower bound of 2 for the compet-
itive ratio of this online problem and presents a greedy type algorithm that
achieves this ratio. Related to this problem is the diploma thesis of the author
of this thesis [54].

definitons

An instance of the MSTF consists of

a set of car groups G
a set of outbound trains B

7.4 feasible schedules 129

a set of periods P
a set of tracks A

the arrival time of car (group) g ∈ G at the hump tg

the time train b ∈ B departs from its formation track tb

the starting time of a period p ∈ P t p

the length of a car (group) g ∈ G lg

the length of a track a ∈ A la

the total length of the mixing tracks lmix

the number of cars in a car group g ∈ G ng

the outbound train a car (group) g ∈ G belongs to b(g)

the cars of an outbound train b ∈ B G (b)

the time needed for roll-out of train troll

the time needed for mixing track pull back tpull

Note that technical set up times like tpull and troll are given as constants and are
independent of the number of cars they are applied to. They are provided by the
yard operator and are not subject to optimization as they also include some safety
buffer. The arriving trains are not present in the data as it turn out that the only
relevant information are the arrival times of the individual car groups, and not the
way they were coupled when arriving at the yard. Therefore when the following
text refers to a train, always an outbound train will be meant.

Further note that only the total length of the mixing tracks lmix is considered.
This simplification is justified as the length of a car compared to the length of a
track is small and as the stated track length leaves some safety buffer which gives
leeway when distributing the cars on the mixing track.

Some further detail of the operations can be factored into the data above and do
not need to be treated independently. When a car arrives after a period is started,
but before the time that is planned for it to be finished, its arrival time has to be
delayed till the period is finished (which is done by parking the car in the arrival
yard). Such information can be directly included in the cars arrival time.

feasible schedules

We want to define what constitutes a feasible schedule for the hump yard. A feasi-
ble schedule will be defined in terms of track sequences. To understand these we
first take a closer look at the kind of decisions we are allowed to make during the
shunting process. Assume we have already decided which trains shall be formed
on which classification tracks. Naturally the formation of a train b1 can only start
once the respective track is cleared, i. e., a train b2 that was build previously on
this track must have left. Up till that moment all cars of b1 must be sent to the
mixing track (possibly multiple times). When b2 has left the yard, the formation of
b1 can immediately start. From now on there is no reason to sent one of its cars
(back) to the mixing track, as this would result in avoidable roll-ins. This means
that the assignment of trains to classification tracks is sufficient to fully determine
the operational schedule for the classification tracks.

130 the multi-stage train formation problem

It may happen that two trains cannot be assembled on the same classification
track. If their departure times are so close that there is no period in between, it will
not be possible to retrieve cars from the mixing tracks for the train that is departing
second. Therefore only certain combinations will be allowed to be build upon the
same track. This can be represented via a strict partial order ≺ over the outbound
trains. For two trains b1, b2 ∈ B the relation b1 ≺ b2 holds iff

(tb1 ≤ tb2 − troll)∧ ((∃g ∈ G(b1), tg < tb2)⇒ (∃p ∈ P , tb1 < tp ≤ tb2 − tpull− troll)).

This basically states that for two trains to be comparable according to the strict
partial order, one of the trains needs to leave before the other one (taking into
account some buffer for technical set up) and, if there exists a car of the later train
arriving before the first one has left the yard, there has to be a period between the
two train departures (again taking set up times into account).

To simplify notation let us introduce two virtual trains u and v which shall exist
for each track. For these shall hold that for each b ∈ B we have u ≺ b ≺ v, i. e., u
may precede and v may succeed any train. The virtual trains are designed to act
as the first and last train upon each track.

A train sequence s = (u, b1, b2, . . . , bk, v) will consist of trains such that for 1 ≤
i < k it holds that bi ≺ bi+1, i. e., the trains of a sequence shall be ordered according
to the strict partial order. For a given train sequence s the notation (b, b′) ∈ s shall
denote that trains b and b′ appear in direct succession within the sequence (i. e.,
there is no other train in between within the sequence). If a train b appears in the
sequence this will also be denoted by b ∈ s. The set of all sequences is denoted as
S .

Not every possible train sequence will be feasible for each track as the track and
train lengths vary. The set of all trains that fit on a given track a ∈ A is given by
B(a) := {b : (b ∈ B) ∧ (lb ≤ la)}. The set of all sequences that are feasible for a
given track a ∈ A will then be given as S(a), i. e., this set will be defined as

S(a) := {s : (s ∈ S) ∧ ((b ∈ s ∧ v 6= b 6= u)⇒ (lb ≤ la))}.

Finally a feasible schedule for an instance consists of a train sequence for each
formation track such that every train appears in exactly one sequence, no train of
a track’s sequence exceeds the length of the track, and such that mixing capacity is
never overused. In order to calculate the mixing track usage, first remember that a
car needs to be mixed in a certain period if the preceding train on the classification
track has not yet left. For period p ∈ P let

Gp(b1, b2) =

{g : (g ∈ G(b2)) ∧ (tg < tp)} if tp < tb1

∅ otherwise

be the set of cars that need to be mixed from train b2 if it is to be formed di-
rectly after b1 upon the same track. Note that mixing only occurs in periods be-
fore b1 has left. In those periods all cars need to be mixed that arrived before
the respective period. Furthermore note that for the virtual trains we will have
Gp(u, b) = Gp(b, v) = ∅.

For two trains b1 ≺ b2 the required mixing track length in period p for cars of b1

is

lp(b1, b2) = ∑
g∈Gp(b1,b2)

lg.

7.5 column generation formulation 131

Correspondingly the required mixing track length for an entire sequence is

lp(s) = ∑
(b1,b2)∈s

lp(b1, b2).

In order to be feasible, a schedule, consisting of a sequence sa for each track a ∈ A,
therefore has to satisfy

∀p ∈ P , ∑
a∈A

lp(sa) ≤ lmix.

In a similar fashion it is possible to calculate the objective of a schedule. For two
trains b1 ≺ b2 the number of required extra roll-ins for cars of b1 is

c(b1, b2) = ∑
p∈P

∑
g∈Gp(b1,b2)

ng.

For an entire sequence the total number of required extra roll-ins now is

c(s) = ∑
(b1,b2)∈s

c(b1, b2).

This results in an overall objective of ∑a∈A c(sa) for the entire schedule.
Note that the number of pulled out cars for a sequence c(s) and the length of

the mixed cars for a certain period lp(s) are related but not the same. It could, for
example, be beneficial to overuse the mixing track capacity for a certain period
in order to minimize overall roll-in operations. Still it can be expected that the
objective will in general help in keeping the mixing track usage low.

column generation formulation

The column generation formulation was the first optimization model for the MSTF
that was capable of solving instances of practical size (multiple days) within a
reasonable time frame (less than 20 minutes). It was first published by Bohlin
et al. (2012) [34] and constituted a major improvement over the model that was
used beforehand [32,33]. The basic idea of the model is to use a variable per possible
sequence for each track. For each such variable it is then easy to calculate the
required quantities (mixing track usage and number of cars rolled in due to mixing)
as shown in Section 7.4.

The model is now given by

min ∑
a∈A

∑
s∈S(a)

c(s) · xs,a (7.1)

s.t. ∑
a∈A

yb,a ≥ 1 ∀b ∈ B (7.2)

∑
s∈S(a)

s3b

xs,a ≥ yb,a ∀a ∈ A, ∀b ∈ B (7.3)

∑
s∈S(a)

xs,a ≤ 1 ∀a ∈ A (7.4)

∑
a∈A

∑
s∈S(a)

lp(s) · xs,a ≤ lmix ∀p ∈ P (7.5)

xs,a ∈ {0, 1} ∀a ∈ A, ∀s ∈ S(a)

132 the multi-stage train formation problem

yb,a ∈ {0, 1} ∀a ∈ A, ∀b ∈ B(a).

In this model the variables yb,a encode whether a certain train shall be assembled
upon a certain track. As explained in Section 7.4, this information is sufficient
to know the entire schedule. These variables will be used to facilitate branching
decisions. The IP solver will be configured to only branch upon the y variables, not
on the x variables. Note that in a solution where all y variables are integral, the
assignment of trains to tracks will be fully determined and therefore the x variables
will need to be integral as well. Branching on the y variables instead of the x
variables makes sense as the number of x variables is much larger and branching
an x variables to 0 results in very little information gain while the corresponding
1-branch is comparatively strong, leading to an unbalanced branch & bound tree.
This is usually undesirable (see also Section 3.3 for more information on branching
rules for column generation). By constraints (7.2) it is ensured that one of the
variables must be set to 1 for each train, i. e., each train will appear in the resulting
schedule.

The variables xs,a track the information which sequence is used on which track.
In Section 7.4 was explained that for entire sequences it is easy to compute relevant
properties, in particular the number of required extra roll-ins, and the required
mixing track length in each period. The quantities are then used to keep track of
the objective value (7.1) and to ensure that the total mixing capacity is not overused
which is done by constraints (7.5). The constraints (7.4) forbid that more than one
sequence is chosen for any track.

The x and y variables are linked together using constraints (7.3) which ensure
that if a train is required to appear on a certain track, then a sequence that con-
tains this train has to be selected for the specified track. Due to the minimization
objective it is sufficient to use greater or equal constraints here and for constraints
(7.2), instead of equality constraints. Not using equality constraints will later help
in the formulation of the pricing problem.

Pricing

The number of possible sequences can grow exponentially in the number of trains.
Therefore the number of x variables is likely too large to be used explicitly when
solving the model. Instead it makes sense to generate these variables only when
they are required. This procedure, denoted column generation, is also described in
Sections 3.2 and 3.3, where it is used to solve Dantzig-Wolfe decompositions.

The algorithm will always work with a (possibly empty) subset of the x variables
and add variables on demand. To figure out which variables are missing, one can
use the problem’s dual formulation and search for violated constraints (note that
each original variable corresponds to a dual constraint – a violated dual constraint
corresponds to a primal variable that might lead to an improvement in the objective
function). The dual formulation of the MSTF is

max ∑
b∈B

αb + ∑
a∈A

γa + ∑
p∈P

lmix · δP

s.t. ∑
b∈P

βb,a + γa + ∑
p∈P

lp(s) · δp ≤ c(s) ∀a ∈ A, ∀s ∈ S(a) (7.6)

αb ≤ βb,a ∀a ∈ A, ∀b ∈ B(a) (7.7)

7.5 column generation formulation 133

αb ∈ R+ ∀b ∈ B
βb,a ∈ R+ ∀a ∈ A, ∀b ∈ B(a)

γa ∈ R− ∀a ∈ A
δp ∈ R− ∀p ∈ P .

Here the α variables correspond to the constraints (7.2), the β variables corre-
spond to the constraints (7.3), the γ variables correspond to the constraints (7.4),
and the δ variables correspond to the constraints (7.5). The dual constraints (7.6)
correspond to the primal x variables and the dual constraints (7.7) to the primal y
variables.

As our interest lies in finding missing x variables, we need to look for constraints
in (7.6) that are violated in the current solution. For a given dual solution one can
find such a violation by solving the optimization problem

max
s∈S(a)

{(∑
b∈s

βb,a) + (∑
p∈P

lp(s) · δp)− c(s)} (7.8)

for each track a ∈ A. If the resulting objective value does exceed −γa then the
corresponding constraint is violated. Otherwise no constraint is violated and the
corresponding primal problem therefore is optimal.

In order to solve (7.8) without enumerating all sequences, we look more closely
at the structure of its objective function. The first term ∑b∈s βb,a depends on each
train in the sequence separately but is independent of the combination of the trains.
The other two terms are dependent on tuples of trains, more precisely on whether
a certain train succeeds another one (as explained in Section 7.4). Now given a
sequence ends with train b1 (ignoring the virtual train v), adding another train b2

to the end of the sequence will add the following term to the objective function:

βb2,a + ∑
p∈P

∑
g∈Gp(b1,b2)

(lg · δp − ng).

This structure of the subproblem costs makes it possible to model the subprob-
lem as a longest path problem on a directed acyclic graph Ga = (Va, Ea), where
there is a vertex Va = {b : (b ∈ B) ∧ (lb ≤ la)} for each train that fits on the
track corresponding to the current subproblem (including the virtual trains u and
v). There is a directed edge (b1, b2) for vertices b1, b2 ∈ V if these trains can be
scheduled in direct succession on the same track (i. e., b1 ≺ b2). These edges are
weighted as follows:

w(b1,b2) =

0 if b2 = v

βb2,a + ∑p∈P ∑g∈Gp(b1,b2)(lg · δp − ng) otherwise.

The choice of the edges Ea ensures that every path from u to v corresponds to a
feasible schedule for track a. On the other hand every feasible schedule for a will
have a corresponding path in Ga, as all possible successions of trains are contained
in the graphs edges. The weight of the path will match the subproblem objective
of the corresponding schedule. Therefore finding a path maximizing these weights
(i. e., a longest path) results in an optimal solution for the subproblem. An example
graph for this subproblem is shown in Figure 19.

As Ga is acyclic, solving the longest path problem can be achieved by a poly-
nomial combinatorial algorithm (in general the longest path problem turns out

134 the multi-stage train formation problem

u b1 b2

b3 b4 v

Figure 19: An example for the longest path subproblem of the MSTF CG model

to be NP-complete [77]). Instead of solving the longest path problem on Ga with
edge weights w one can solve the equivalent shortest path problem by using the
negative edge weights −w. As the resulting graph does not contain cycles of neg-
ative total weight one can find such a shortest path, e. g., using the Bellman-Ford
algorithm [23].

Branching decisions

When using column generation it often turns out that the IP solvers standard
branching decisions are insufficient to yield good results (see also Section 3.3).
In our formulation we introduced variables yb,a, encoding whether a certain train
is to be scheduled upon a certain track. If these variables are integral, the entire
solution will be. Therefore it is sufficient to perform branching decisions upon
the y variables. In this way we avoid having to perform branching decisions on
the generated variables which would increase the problems complexity. To ensure
that the IP solver does not perform branching on x variables they can be declared
fractional (or implied integer if such a setting is supported by the solver).

Though the branching itself can now be handled by the underlying IP solver, the
pricing problem still requires adjustments to prevent that sequences are generated
which are in conflict with the branching decisions of the current branch & bound
node. Each branching decision has two possible branches. Either yb,a is set to 0
or to 1 for some combination of train and track. Both of these cases will now be
considered separately:

yb ,a = 0: In this case train b needs to be removed from vertex set Va . Also all
edges ending or starting in b must be removed from Ea . Now no sequence
containing b can be generated for track a, while all other sequences are still
possible.

yb ,a = 1: In this case it needs to be guaranteed that every u-v-path in Ga traverses
b. To do so, consider all combinations of trains b ′ , b ′ ′ ∈ V such that b ′ ≺ b ′ ′

and where tb ′ ≤ tb ≤ tb ′ ′ . To ensure that b is not skipped by edge (b ′ , b ′ ′),
it needs to be removed from Ea . Furthermore we can additionally reduce the
graphs size by removing vertices which are now either unreachable or result
in a dead end (i. e., vertices b ′ ∈ V such that neither b ′ ≺ b nor b ≺ b ′).

The modifications based upon the example in Figure 19 for a branching decision
made on train b2 are shown in Figure 20.

7.6 compact formulation 135

u b1

b3 b4 v

(a) Modifications for yb2,a = 0

u b1 b2

b4 v

(b) Modifications for yb2,a = 1

Figure 20: Branching decisions on train b2 based upon the example from Figure 19

compact formulation

The column generation (CG) formulation from preceding Section 7.5 can solve rea-
sonably large instances of the MSTF efficiently [36] but the correct implementation
of this algorithm requires the consideration of many complex details (such as han-
dling the pricing and branching decisions properly). Therefore it is desirable to
find a compact IP formulation that could be used instead. In fact it is possible
to formulate the problem in a compact way such that the linear programming re-
laxation turns out to yield the same bound as the relaxed master problem of the
CG formulation. This formulation was first introduced by Güçlü (2012) [84] as a
Master’s thesis. Later Bohlin et al. (2013) [35] improved this model with slight mod-
ifications and provided a rigorous proof of the equivalence of the LP relaxation of
this formulation and the CG model.

The compact model exhibits many similarities to the CG formulation as it also
centers around the concept of feasible sequences. The basic building block are three
indexed variables xb1,b2,a which encode whether train b1 shall be scheduled directly
preceding train b2 upon track a or not. As also used in Section 7.5, the information
which train directly precedes another one contains sufficient information to model
the associated costs as well as the mixing track usage.

The compact formulation is now given by

min ∑
a∈A

∑
b1,b2∈B
b1≺b2

c(b1, b2) · xb1,b2,a (7.9)

s.t. ∑
a∈A

b2∈B(a)

∑
b1∈B(a)

b1≺b2

xb1,b2,a ≥ 1 ∀b2 ∈ B (7.10)

∑
b2∈B

xu,b2,a ≤ 1 ∀a ∈ A (7.11)

∑
a∈A

∑
b1,b2∈B(a)

b1≺b2

lp(b1, b2) · xb1,b2,a ≤ lmix ∀p ∈ P (7.12)

∑
b1∈B(a)

b1≺b2

xb1,b2,a − ∑
b1∈B(a)

b2≺b1

xb2,b1,a = 0 ∀a ∈ A, ∀b2 ∈ B(a) \ {u, v}

(7.13)

xb1,b2,a ∈ {0, 1} ∀a ∈ A, ∀b1,b2∈B(a)
b1≺b2

.

The objective (7.9) is calculated by counting the costs incurred by the chosen
succeeding trains for each track. In constraints (7.10) it is guaranteed that each train
does appear in one of the variables (and is therefore part of the schedule). With
constraints (7.11) only one train is allowed to succeed the virtual train u on each

136 the multi-stage train formation problem

track, therefore only one sequence can be build upon each track. Constraints (7.12)
ensure that the total mixing capacity is not exceeded in any period. Constraints
(7.13) are a kind of “flow conservation”, enforcing that a train having a predecessor
on a certain track must have a successor on the same track (except for the virtual
trains u and v).

A useful property of this compact formulation is that its LP relaxation has the
same optimal objective value as the relaxed master problem of the column genera-
tion formulation:

Theorem 7.1. The LP relaxation of the compact formulation and the relaxed master prob-
lem of the column generation formulation have the same objective value for the same prob-
lem.

Proof. This proof is adapted from Bohlin et al. (2013) [35].
To establish the result, it is enough to show that any feasible solution to the LP

relaxation of one problem can be translated into a feasible solution of the other
one, having the same objective value.

Note that the y variables in the column generation formulation exist for the
purpose of facilitating branching decisions and do not carry information about the
solution which is not also present in the x variables. They can be removed from
the formulation by joining constraints (7.2), (7.3) and (7.4) to

∑
a∈A

∑
s∈S(a):
b∈s

xs,a ≥ 1 b ∈ B. (7.14)

Now let x∗ be a feasible solution to the LP relaxation of the column genera-
tion formulation. A feasible solution x̃ for the compact formulation can then be
constructed as

x̃b1,b2,a = ∑
s∈S(a):

(b1,b2)∈s

x∗s,a ∀b1, b2 ∈ B, a ∈ A

The first step is to show that constraints (7.13) are fulfilled given the construction
of x∗. First let a ∈ A and b ∈ B(a) \ {u, v}. Then for some sequence

s′ ∈ {s ∈ S(a) : ∃b′ ∈ B(a), (b′ ≺ b) ∧ ((b′, b) ∈ s)}

there has to be some train b′ ∈ B(a) such that b ≺ b′ and (b, b′) ∈ s′ as b 6= v.
Similarly the other direction holds as well, as b 6= u, which means that

{s ∈ S(a) : ∃b′ ∈ B(a), (b′ ≺ b) ∧ ((b′, b) ∈ s)}
={s ∈ S(a) : ∃b′ ∈ B(a), (b ≺ b′) ∧ ((b, b′) ∈ s)}.

Using this it can now be shown that

∑
b′∈B(a)

b′≺b

x̃b′,b,a − ∑
b′∈B(a)

b≺b′

x̃b,b′,a = ∑
b′∈B(a)

b′≺b

∑
s∈S(a):

(b1,b2)∈s

x∗s,a − ∑
b′∈B(a)

b≺b′

∑
s∈S(a):

(b1,b2)∈s

x∗s,a

= 0

and therefore (7.13) is fulfilled. For the other constraints and the objective the proof
will work in a similar way.

7.6 compact formulation 137

The objective stays the same in both cases. This can be shown using the definition
of the cost c(s):

∑
a∈A

∑
b1,b2∈B
b1≺b2

c(b1, b2) · x̃b1,b2,a = ∑
a∈A

∑
b1,b2∈B
b1≺b2

c(b1, b2) · ∑
s∈S(a):

(b1,b2)∈s

x∗s,a

= ∑
a∈A

∑
s∈S(a)

x∗s,a · ∑
(b1,b2)∈s

c(b1, b2)

= ∑
a∈A

∑
s∈S(a)

c(s) · x∗s,a.

In a similar way it is shown that the left hand side for (7.5) is the same as in
(7.12):

∑
a∈A

∑
b1,b2∈B(a)

b1≺b2

lp(b1, b2) · x̃b1,b2,a = ∑
a∈A

∑
s∈S(a)

lp(s) · ∑
s∈S(a):

(b1,b2)∈s

x∗s,a

= ∑
a∈A

∑
s∈S(a)

x∗s,a · ∑
(b1,b2)∈s

lp(b1, b2)

= ∑
a∈A

∑
s∈S(a)

lp(s) · x∗s,a.

The equivalence of the left hand sides for (7.4) and (7.11) is again shown in a
similar fashion:

∑
b2∈B

x̃u,b2,a = ∑
b2∈B

∑
s∈S(a):

(b1,b2)∈s

x∗s,a = ∑
s∈S(a)

x∗s,a.

Also the equivalence of the left hand sides for (7.14) and (7.10) works similarly:

∑
a∈A

b2∈B(a)

∑
b1∈B(a)

b1≺b2

x̃b1,b2,a = ∑
a∈A

b2∈B(a)

∑
b1∈B(a)

b1≺b2

∑
s∈S(a):

(b1,b2)∈s

x∗s,a = ∑
a∈A

∑
s∈S(a):
b2∈s

x∗s,a.

The final step of the proof is to show that a corresponding solution x∗ can be
constructed given a valid x̃. The flow preservation constraints (7.13) ensure that x̃
can be interpreted as a flow between trains for each track, where u is the source
and v the sink node. Due to the partial order ≺ there can be no cycles in this flow
and therefore the flow can be decomposed into simple paths sa

1, . . . , sa
na
∈ S(a) for

each track a ∈ A (see Ahuja et al. (1993) [5], Theorem 3.5, pp. 89, for a proof of
the existence of this decomposition). Let x∗s,a be the flow sent over path s in this
decomposition. Due to the nature of the decomposition we get that

x̃b1,b2,a = ∑
s∈S(a):

(b1,b2)∈s

x∗s,a ∀b1, b2 ∈ B, a ∈ A

which concludes the proof, as this implies equality for the objective and the left
hand sides of the relevant constraints.

Theorem 7.1 basically states that in terms of the relaxation the CG and the com-
pact formulation are equivalent. While the column generation formulation has the
advantage that the subproblems can be solved very efficiently, the compact formu-
lation can be implemented with less effort. Furthermore it directly profits more
from advances made in the technology of the used IP solver, while a CG formula-
tion often requires additional effort to implement new improved solver techniques.

138 the multi-stage train formation problem

aggregated column generation formulation

When analyzing the structure of the CG formulation more closely it turns out that
most sequences are feasible for multiple tracks. In fact, the real instances studied by
Bohlin et al. (2015) [36] exhibit classification tracks which are mostly very similar in
length. This leads to many equivalent variables being generated for multiple tracks.
This overhead can be circumvented. If we already know which train sequences
shall be used, finding the final schedules turns into a bipartite matching problem
where sequences need to be matched to tracks of sufficient length.

Column generation problems that exhibit such a partially symmetric structure
have already been studied in a more generic setting in Chapter 5. The same tech-
niques can be applied to the CG formulation of the MSTF presented in Section 7.5.
This can be achieved by aggregating the subproblems for the different tracks into
a single pooled subproblem. The variables will no longer be tied to a certain track
but will only encode whether a specific sequence is chosen or not.

As each sequence fitting on some track will also fit on all larger tracks this
problem has a nested structure and therefore only |A| many partial transversal
polytope constraints are required to ensure matchability of the chosen sequences.
Therefore no cutting plane procedure is required.

Applying the heterogeneous aggregation technique to the CG formulation re-
sults in the following aggregated CG formulation:

min ∑
s∈S(a)

c(s) · xs

s.t. ∑
s3b

xs ≥ 1 ∀b ∈ B

∑
s∈S

lp(s) · xs ≤ lmix ∀p ∈ P

∑
s∈S

∀a′∈{a′′∈A:la′′<la},s 6∈S(a′)

xs ≤ |{a′ : (a′ ∈ A) ∧ (la′ ≥ la)}| ∀a ∈ A

xs ∈ {0, 1} ∀s ∈ S .

Branching

Note that the aggregated CG formulation does not have the y variables used for
branching in the CG formulation. Due to the aggregation the old branching scheme
is not feasible anymore. As described in Chapter 5 a different approach is required.
In this case we are facing a master problem with set covering structure as each
train needs to be included in one of the used sequences (note that the ≥ in theory
allows a train to appear in multiple sequences but such a schedule can always
be replaced by a schedule where this train is removed from all but one of these
sequences). Therefore the Ryan-Foster branching scheme is applicable in this case.
To better fit into the longest path algorithm of the subproblem, the scheme will be
slightly modified.

The two possible branching decisions for a tuple of trains (b1, b2) will be whether
they are to be scheduled in direct succession or not (directly translating the scheme
of Ryan and Foster would be to distinguish between them being in the same se-
quence or not). In each case the pricing problem graph needs to be adjusted in
order to prevent forbidden sequences to be generated.

7.8 conclusion 139

u b1 b2

b3 b4 v

(a) b1 directly preceding b3

u b1 b2

b3 b4 v

(b) b1 not directly preceding b3

Figure 21: Branching on the train pair (b1, b3) for the heterogeneously aggregated column
generation formulation based upon the example from Figure 19

b1 directly succeeded by b2 : In this case all edges (b ′ , b2) as well as (b1 , b ′)
for b ′ ∈ B \ {b1 , b2} need to be removed from Ea to ensure that b2 can only
be reached from b1 and choosing b1 means choosing b2 next.

b1 not directly succeeded by b2 : In this case only the edge (b1 , b2) has to
be removed from Ea .

Figure 21 shows how the resulting graphs look like for the example from Figure
19 based upon the train pair (b1 , b3).

conclusion

This chapter presented the multi-stage train formation problem and three integer
programming models for solving it. One of these is based upon variables for entire
train sequences for each classification track. This formulation is to be solved us-
ing column generation and insights into the implementational details (such as the
pricing problem and the branching decisions) are given. As the model exhibits sig-
nificant symmetries between the subproblems for different tracks, heterogeneous
aggregation turns out to be an applicable technique for this problem class. The
corresponding formulation as well as the required modifications for the branching
decision are presented.

Furthermore a compact model is presented that does not require the use of
column generation, and which turns out to be equivalent to the CG model. It
is stated that the corresponding linear programming relaxations achieve the very
same objective.

The column generation formulation is suitable for heterogeneous aggregation
(see chapter 5). So far no experiments have been performed with regard to this
method, taking into account the special structure of the problem and comparing
the performance with the plain column generation and the compact formulation.
This will be an interesting area for future research.

8
VA R I O U S A P P L I C AT I O N S O F H E T E R O G E N E O U S
A G G R E G AT I O N

This chapter will present several computational experiments for the concept of
heterogeneous variable aggregation that was developed previously in Chapter 5.
The optimization problems which are eligible for this methodology and which will
be studied here are the list coloring problem, the machine scheduling problem with
variable machine speeds and the multiple knapsack problem, which was already
used to illustrate the theory in Chapter 5.

First the problems and their definitions will be explained. Hopefully this will
help the reader to discover problems with a similar structure where a hetero-
geneous aggregation algorithm might be of benefit. For the multiple knapsack
problem a tailor made implementation will be compared against a generic branch
& price method. Together with my colleague Martin Bergner, we implemented a
generic implementation of the heterogeneous aggregation method which can be
used on arbitrary problem instances exposing the corresponding structure. This
implementation will be compared on various instances of the three different opti-
mization problems against the results of the generic column generation framework
GCG [75].

Together with the findings in Chapter 5, the experiments in this section where a
collaborative effort with Martin Bergner.

problem defintions

This section will briefly explain the optimization problems used for the experi-
ments. The structure will be examined and it will be shown how it is applicable for
the heterogeneous aggregation technique. The appropriate integer programming
formulation will be stated. Also the sources for the various problem instances will
be stated.

The multiple knapsack problem

This problem was already described in Chapter 5. For an instance of the multiple
knapsack problem we are given the following sets and parameters:

• a set I of items

• a set K of knapsacks

• a weight ai for each item i ∈ I

• a value vi for each item i ∈ I

• a capacity ck for each knapsack k ∈ K

Each item can be placed in exactly one knapsack or not be packed at all. The sum
of the weights of the items within a knapsack may not exceed the knapsack’s capac-
ity. The objective is to maximize the total value of the packed items. This problem

141

142 various applications of heterogeneous aggregation

is on the one hand closely related to the classical knapsack problem, where only
one knapsack would be in use, i. e., |K| = 1. On the other hand it generalizes the
bin packing problem in the sense that when all knapsacks have the same size we
can search for the minimal amount of required knapsacks for packing all items
via bisection search. Unlike the classical knapsack problem, the multiple knapsack
problem is therefore NP-hard in the strong sense.

A common integer programming formulation for the classical knapsack problem
is

max{∑
i∈I

vixi : (∑
i∈I

aixi ≤ c) ∧ (x ∈ {0, 1}|I|)}

where each xi variable encodes whether the item is packed into the knapsack
(which has a capacity of c) or not. For the multiple knapsack problem this can
easily be extended to

max ∑
k∈K

∑
i∈I

pixi,k

s.t. ∑
i∈I

aixi,k ≤ ck ∀k ∈ K (8.1)

∑
k∈K

xi,k ≤ 1 ∀i ∈ I (8.2)

x ∈ {0, 1}|I|·|K|

with variables xi,k indicating whether item i ∈ I will be placed in knapsack k ∈ K
or not.

A typical Dantzig-Wolfe reformulation of the multiple knapsack problem places
the constraints (8.1) in the subproblem and the constraints (8.2) in the master prob-
lem. The subproblem will in this way have block diagonal structure, with a block
corresponding to each knapsack (and each block consisting of a single knapsack
constraint). In this way we arrive at the master problem

max ∑
k∈K

∑
p∈Pk

vᵀpλk
p

s.t. ∑
k∈K

∑
p∈Pk

pi=1

λk
p ≤ 1 ∀i ∈ I

∑
p∈Pk

λk
p = 1 ∀k ∈ K

λk ∈ {0, 1}|P
k | ∀k ∈ K

where each extreme point represents a packing pattern (containing one value for
each packed item) for a single knapsack and the sets Pk contain all possible pack-
ings for the respective knapsack. The corresponding aMP, using heterogeneous
aggregation reads

max ∑
p∈P

vᵀpλp

s.t. ∑
p∈P
pi=1

λp ≤ 1 ∀i ∈ I

8.1 problem defintions 143

∑
p∈P

λp = |K|

∑
p∈P:

∀k′ 6∈K̄,aᵀp>ck′

λp ≤ |K̄| ∀k ∈ K, K̄ = {k′ ∈ K : ck′ ≥ ck} (8.3)

λ ∈ {0, 1}|P|.

Note that the multiple knapsack problem belongs to the class of problems with
ordered subproblems (see Section 5.4). Therefore the constraints (8.3) are sufficient
to ensure the matchability of the aMP solution to the original blocks.

The instances used for the experiments are based upon those also used by
Martello and Toth (1990) [116], Pisinger (1999) [132] and Fukunaga (2011) [73]. A gen-
erator for these instances can be found on David Pisinger’s homepage:

http://www.diku.dk/~pisinger/codes.html

Of the instance subclasses available from the generator we used the following
three:

uncorrelated : The item values vi and the weights ai are independent and
identically distributed (i.i.d.) using a uniform distribution on the interval
[10, 1000].

weakly correlated : The weights ai are i.i.d. with a uniform distribution on
the interval [10, 1000]. The corresponding values vi are then drawn uniformly
from the interval [max{1, ai − 99}, ai + 99] based upon the respective item’s
weight ai

strongly correlated : The weights ai are i.i.d. with a uniform distribution on
the interval [10, 1000]. The value vi is then simply assigned as vi = ai + 99.

For the knapsack capacities ck there are two different variants:

similar capacities : For the first |K| − 1 knapsacks the capacities are drawn
independent and identically from the uniform distribution on the interval[

0.4
|K|∑i∈I

ai,
0.6
|K|∑i∈I

ai

]

dissimilar capacities : Here the knapsack capacities are dependent upon pre-
viously generated capacities. Given the knapsacks are ordered as k1, . . . , k|K|,
then the capacity of knapsack k j with 1 ≤ j ≤ |K| − 1 is drawn from[

0,
1
2
(∑

i∈I
ai − ∑

1≤j′≤j−1
cj′)

]

In both cases, the capacity of the last knapsack k|K| is then assigned as ck|K| =
1
2 ∑i∈I ai −∑k∈K\{k|K|} ck such that the total knapsack capacity is always exactly half
of the sum of the knapsack weights.

For the multiple knapsack problem two different sets of implementations are ex-
amined. On the one hand there is a dedicated implementation suitable for only the
multiple knapsack problem. On the other hand a generic implementation, also suit-
able for the other heterogeneously aggregatable problems is run for this problem
class.

http://www.diku.dk/~pisinger/codes.html

144 various applications of heterogeneous aggregation

For the dedicated solver, instances of the following sizes were generated: 45
items and 15 knapsacks, 48 items and 12 knapsacks, 60 items and 10 knapsacks, as
well as 75 items and 15 knapsacks. For each combination of settings and sizes, 20
different instances were created, leading to a total of 480 individual instances.

For the generic implementation, instances with 2, 5, 10, 20, and 40 knapsacks
were created, each of these once with 200 and once with 500 items. For each com-
bination of these sizes, as well as the other instance settings, a total of 10 different
instances were created, leading to overall 600 individual instances.

The list coloring problem

The list coloring problem is an extension of the classical vertex coloring problem
and was introduced by Vizing (1976) [162]. A list coloring instance consists of

• a regular graph G = (V, E)

• a set C of colors

• for each vertex v ∈ V a list C(v) ⊆ C of colors

A function f : V → C is called a proper list coloring of G if each vertex is
assigned a color from it’s list and two adjacent vertices do not share the same color,
i. e., ∀v ∈ V, f (v) ∈ C(v) and ∀{v1, v2} ∈ E, f (v1) 6= f (v2). As an extension of the
classical vertex coloring problem, the problem of finding a proper list coloring is
also NP-hard in the strong sense.

In the optimization variant of the problem, the goal is to find a proper vertex
coloring f such that the total amount of used colors |⋃v∈V{ f (v)}| is minimal. An
MILP formulation for this is

min ∑
c∈C

yc

s.t. ∑
c∈C(v)

xv,c ≥ 1 ∀v ∈ V (8.4)

xv1,c + xv2,c ≤ 1 ∀{v1, v2} ∈ E, ∀c ∈ C(v1) ∩ C(v2) (8.5)

xv,c ≤ yc ∀v ∈ V, ∀c ∈ C(v) (8.6)

xv,c ∈ {0, 1} ∀v ∈ V, ∀c ∈ C(v)

y ∈ {0, 1}|C|.

Here the variables xv,c encode whether vertex v gets assigned color c or not and
the variables yc track the usage of color c. This formulation can be reformulated in
the Dantzig-Wolfe sense by placing the constraints (8.4) in the master problem and
relegating constraints (8.5) and (8.6) to the subproblem. This leads to the master
problem

min ∑
c∈C

∑
p∈Pc

dpλc
p

s.t. ∑
c∈C(v)

∑
p∈Pc

pv=1

λc
p ≥ 1 ∀v ∈ V

λc ∈ {0, 1}|P
c| ∀c ∈ C.

8.1 problem defintions 145

Each extreme point p ∈ Pc here encodes an independent set in the subgraph of
G containing the vertices which can use color c. Note that independent sets are
exactly the groups of vertices which can have the same color. The cost dp of an
extreme point will be zero for the independent set without any vertices and one
otherwise.

In each subproblem we need to solve a weighted independent set problem. This
column generation formulation using independent sets as columns was initially
proposed by Mehrotra and Trick (1996) [118] as an efficient algorithm for the classi-
cal vertex coloring problem.

As the master problem treats each subproblem completely equal, heterogeneous
aggregation can be applied for list coloring. Let C(p) =

⋂
v∈V:pv=1 C(v) be the set

of all colors suitable for extreme point p ∈ P. Then we arrive at the aMP

min ∑
p∈P

dpλp

s.t. ∑
p∈P
pv=1

λp ≥ 1 ∀v ∈ V

∑
p∈P

C(p)⊆C̄

λp ≤ |C̄| ∀C̄ ⊆ C (8.7)

λ ∈ {0, 1}|P|.

Note that the number of partial transversal polytope constraints (8.7) might be
small if the total number of colors is, which can be the case for many coloring
problems. Here one might consider to include the constraints a priori instead of
using a separation algorithm.

The list coloring instances used for the experiments are based upon a collection
of regular graph coloring instances, published by Michael Trick on

http://mat.gsia.cmu.edu/COLOR/instances.html

These instances are then transformed into list coloring instances as follows. The
list of totally available colors is based upon the already known chromatic number
(or the best known upper bound for this). We chose about 1.25 times the chromatic
number as the number of available colors in most instances, but these numbers
were adjusted by hand for some instances in order to yield sufficiently difficult
instances if necessary. For each vertex and each color, the color is added to the list
of the vertex with probability 1− p, where we tried several possible values for p.
Instances were generated for p ∈ {0.05, 0.1, 0.2, 0.3, 0.5}. If this procedure results
in an empty list for some vertex, its list is generated anew, possibly repeating this
until achieving a non empty list. Note that this leaves a slight possibility for gen-
erating infeasible instances (e. g., having two neighboring vertices with the same
color as the only possibility in each of their lists) which was not checked on in-
stance generation and which is a case that did not occur in any of the instances. In
total 46 graphs from the library were used, resulting in 230 different instances for
the 5 different probability settings.

http://mat.gsia.cmu.edu/COLOR/instances.html

146 various applications of heterogeneous aggregation

The machine scheduling problem with variable machine speeds

An instance of the machine scheduling problem with variable machine speeds is
defined by the following parameters:

• a set of machines M

• a set of jobs J

• for each job j ∈ J a weight wj ∈ R+

• for each job j ∈ J a due date dj ∈ Z+

• for each machine m ∈ M and each job j ∈ J a processing time qj,m ∈ Z+

indicating the time machine m needs to finish job j

Each job j ∈ J needs to be assigned to exactly one machine m ∈ M and a point in
time, denoted as s(j), when the job shall start processing. From the assigned time
the job will take qj,m time units to be finished. During that time interval no other
job may be assigned to the respective machine. The job may not be interrupted
or reassigned to another machine but has to reside on its original machine till
completion. The job will finish at time s(j) + qj,m and its tardiness will be defined
as a(j) = max{0, s(j) + qj,m − dj}, i. e., the time by which the due date was missed.

Our goal will be to minimize the total weighted tardiness, i. e., ∑j∈J wja(j). Many
different integer programming models exist for this problem (and the numerous
variants thereof). Unlu and Mason (2010) [157] list multiple MILP formulations and
compare their performance with respect to CPLEX 10.1. They report best perfor-
mances for time indexed formulations, of which a modified variant shall also be
used in this chapter.

Note that all time related properties are assumed to be integral, making it easy
to discretize time. For the remainder of the chapter assume that we know an upper
bound on the total processing time (which can, e. g., be derived from a heuristic
solution). This allows us to use a discrete set T of possible timeslots to which the
jobs can be assigned. For a timeslot t ∈ T the next following timeslot shall be
denoted as t + 1. Now the following integer programming formulation is suitable
to solve the minimum weighted tardiness problem:

min ∑
m∈M

∑
j∈J

wjyj,m

s.t. ∑
m∈M

∑
t∈T

xj,m,t = 1 ∀j ∈ J (8.8)

∑
j∈J

∑
t′∈T,t′≤t

t′≥t−qj,m+1

xj,m,t′ ≤ 1 ∀t ∈ T, ∀m ∈ M (8.9)

(∑
t∈T

(t + qj,m)xj,m,t)− dj ≤ yj,m ∀j ∈ J, m ∈ M (8.10)

x ∈ {0, 1}|J|·|M|·|T|

y ∈ Z
|J|·|M|
+ .

where variables xj,m,t indicate whether job j starts on machine m at time t or not.
The variable yj,m counts the tardiness that job j generates on machine m. Note
that one can reduce the number of variables by replacing the y variables by an

8.1 problem defintions 147

aggregated version y′j = ∑m∈M yj,m counting the total tardiness of a job regardless
of the machine. While this does not improve the LP relaxation of the formulation,
replacing the y variables in this way would later destroy the structure needed
to aggregate the master problem variables. Therefore it is desirable to use the
aforementioned model.

One way to formulate a Dantzig-Wolfe decomposition is to place constraints (8.8)
in the master problem and constraints (8.9) and (8.10) in the subproblem. In this
way we get a subproblem for each machine and each column will represent the
schedule for its respective machine. Pm will be the set of all feasible schedules for
machine m. A schedule will be fully determined by the contained jobs and their
completion times. The notation j ∈ p for some job j and a schedule p will denote
that job j is present in schedule p. f (p, j) will be the time when job j is finished
according to schedule p. The tardiness for a schedule p is then given as

cp = ∑
j∈p

max{0, f (p, j)− dj}

The resulting master problem is

min ∑
m∈M

∑
p∈Pm

cpλm
p

s.t. ∑
m∈M

∑
p∈Pm

j∈p

λm
p = 1 ∀j ∈ J

∑
p∈Pm

λm
p = 1 ∀m ∈ M

λm ∈ {0, 1}|P
m| ∀m ∈ M.

As a schedule can be used for any machine that completes the contained jobs
sufficiently fast, the following aggregated master problem can be used in order
to reduce potential for symmetric solutions. Here P =

⋃
minM Pm is the set of all

schedules feasible for any machine and M(p) denotes the set of machines for which
p is a feasible schedule.

min ∑
p∈P

cpλp

s.t. ∑
p∈P
j∈p

λp = 1 ∀j ∈ J

∑
p∈P

M(p)⊆M̄

λp ≤ |M̄| ∀M̄ ⊆ M (8.11)

λ ∈ {0, 1}|P|.

Similar to the list coloring problem, the partial transversal polytope constraints
(8.11) can be easily enumerated if the number of machines is low (with more than
15 machines the number here quickly grows too large). Also in practice it can easily
happen that processing times are ordered in the sense that a faster machine will be
generally faster on all jobs, leading to a nested ordering of the subproblems, mak-
ing it trivial to enumerate the necessary partial transversal polytope constraints.

The instances used for the experiments were created using a random instance
generator. The generator and its settings were designed according to recommenda-

148 various applications of heterogeneous aggregation

tions from Hall and Posner (2001) [86]. As no reason for a more complicated pro-
cedure was found, the instance basic parameters are drawn independently from
uniform distributions.

First in order to generate the jobs J, a base processing time qbase
j for each job

is drawn i.i.d from the uniform distribution over the discrete set {qmin, . . . , qmax}.
In the same fashion the job weights are drawn i.i.d from the uniform distribution
over {wmin, . . . , wmax} and the jobs due dates are drawn i.i.d from the uniform
distribution over {dmin, . . . , dmax}. For each of the machines m ∈ M a base speed sm

is drawn i.i.d. from the uniform distribution {smin, . . . , smax}. Now the processing

times are assigned as qj,m =
⌈ qbase

j
sm

⌉
.

In order to generate the time indexed formulation presented earlier, an upper
bound on the number of required timeslots is needed. In our case this is estimated
as

2
⌈∑j∈J qbase

j

∑m∈M sm

⌉
i. e., the most optimistic make span is taken and multiplied by a factor of 2. For all
generated instances this bound leads to a feasible model.

The number of machines was set to 8 and the number of jobs to 40. For the job
weights and due dates the values wmin = 1, wmax = 5, dmin = 5, and dmax = 15
were chosen for all instances. For the other generator parameters the following five
scenarios were tried:

Scenario

A B C D E

qmin
1 1 10 10 10

qmax
10 15 100 150 150

smin
1 1 10 10 10

smax
2 3 20 30 15

For each scenario 50 different instances were created, resulting in a total of 250
different instances.

Other eligible problems

In general, a problem will likely be suitable for the heterogeneous variable aggre-
gation technique if there is a Dantzig-Wolfe decomposition where branch & price
has proven to be an efficient method, and where there are multiple subproblems
which are very similar (having the same impact on the objective and the linking
constraints) but not necessarily identical. For example the following problems have
variants which also might be suitable for heterogeneous aggregation:

vehicle routing : In the vehicle routing problem (VRP) a set of vehicles shall
be routed through a graph in order to visit certain vertices, minimizing total
travel cost and potentially subject to certain constraints, like vehicle capacity.
One can formulate a column generation algorithm where each variable rep-
resents one complete route for a single vehicle. These variables can easily be
aggregated, if one does not care which route is associated with which vehicle.

8.2 experiments – mkp specific 149

As a variant of the classical VRP, many applications have to deal with differ-
ing vehicle specifics, leading to the variable fleet VRP. Here the matching of
routes to vehicles might get more complicated, resulting in an appropriate
setting for heterogeneous aggregation.

cutting stock : The cutting stock problem is a close relative to the bin packing
(and the multiple knapsack) problem. The objective is to cut several large
rolls (e. g., of paper) of fixed width into several smaller pieces such that the
amount of left overs is minimized. For cutting stock one of the earliest col-
umn generation procedures is described in Gilmore and Gomory (1961) [80].
Each variable here represents a cutting pattern for a single roll. In the cutting
stock problem with variable stock lengths, the rolls have slightly different
sizes, leading to the required formulation for the heterogeneous aggregation
method.

crew scheduling : Crew scheduling deals with the task of assigning crew mem-
bers to certain tasks (usually the operation of aircrafts, trains, etc.) where the
order of the tasks plays an important role (e. g., due to the transportation
systems schedule). For many variants of this problem, column generation ap-
proaches have proven to be efficient for dealing with them [20,64]. Often each
variable represents the schedule of a single crew member. As crew members
are likely not able to perform every task, this might be again suitable case for
heterogeneous aggregation.

experiments – mkp specific

For the multiple knapsack instances, two dedicated solvers were implemented
based upon the SCIP [4] framework. SCIP’s binpacking example was used as the
basis for both implementations. In one variant, no aggregation was employed, in
the other one the heterogeneous aggregation was implemented. For the hetero-
geneous aggregation, the partial transversal polytope constraints were added ini-
tially in the master problem, as multiple knapsack has ordered subproblems. The
branching decisions in the branch & bound tree are either based upon the original
variables or performed using the branching rule by Ryan and Foster (see Chapter
5 and Ryan and Foster (1981) [139]). The implementation’s source code is available
on GitLab:

https://gitlab.com/florian.dahms/multiple-knapsack

The experiments were run on machines with Intel Core i7-2600 CPUs with 16GB
of RAM. The machines ran on openSUSE 13.1 (x86_64) and the 3.11.10 Linux kernel.
The solvers did only employ a single thread each. All experiments were run with
a time limit of 600 seconds. For a few instances the experimental code does break
due to software bugs, which can be expected in experimental software on this level
of complexity. The corresponding instances are treated as if they hit the time limit
and their optimality gap is set to ∞

Table 8 shows statistics of the two solvers performance, aggregated by the knap-
sack similarities, Table 9 shows the same statistics, but aggregated by the correla-
tion between the item sizes and values. Each table shows median running times in
seconds, the number of times each solver was able to prove optimality within the
time limit and the number of times the solver had the best overall performance –

https://gitlab.com/florian.dahms/multiple-knapsack

150 various applications of heterogeneous aggregation

Similar capacities Dissimilar capacities

no agg. agg. no agg. agg.

Median time 33.02 26.62 16.27 15.54

Optimal solution found 154 158 217 217

Best performance 127 151 106 139

Table 8: Statistics for dedicated multiple knapsack solvers, aggregated by knapsack simi-
larities

UnCor WeakCor StrongCor

no agg. agg. no agg. agg. no agg. agg.

Median time 13.44 13.57 18.93 19.73 37.91 32.17

Optimal solution found 150 155 125 121 96 99

Best performance 69 93 83 90 81 107

Table 9: Statistics for dedicated multiple knapsack solvers, aggregated by correlation be-
tween item size and value

measured as the lowest running time or the lowest remaining gap (if both did not
prove optimality within the time limit).

experiments – generic gcg implementation

In order to test the heterogeneous aggregation technique on a wider variety of
instances, we implemented a generic version of it within the generic column gen-
eration framework GCG [75] in version 2.0.0. More information regarding GCG can
be found on its homepage:

http://www.or.rwth-aachen.de/gcg/

The implementation is compared to a plain version of GCG 2.0.0 and to a variant
of GCG with settings adjusted in order to be more comparable to the heteroge-
neous aggregation method, as the new technique requires some advanced solver
features to be disabled.

The experiments were performed on the RWTH Aachen HPC Cluster using In-
tel Xeon X5675 processors running at 3.06 GHz. Each job ran non-exclusively on
nodes with up to 8 concurrent processes. As concurrent jobs might affect the solver
performance and in order to counter the effects of performance variability [112] each
instance was run with 3 random permutations of its rows and columns. Each job
was given a time limit of 1 hour. For a few instances the experimental code does
break due to software bugs, which can be expected in experimental software on
this level of complexity. The corresponding instances are treated as if they hit the
time limit and their optimality gap is set to ∞.

Tables 10, 11 and 12 show some core statistics regarding the performance of the
tested algorithms. For each algorithm is listed how often it

http://www.or.rwth-aachen.de/gcg/

8.4 conclusion 151

0

100

200

300

400

500

600

1 10 100

In
st

an
ce

s
so

lv
ed

Time in seconds

Dedicated multiple knapsack solvers

no aggregation
with aggregation

Figure 22: Solver runtimes for dedicated multiple knapsack solvers on all instances

GCG (plain) GCG (comparable) GCG (het. aggr.)

Best performance 1696 1164 108

Best dual bound 1737 1696 970

Best primal bound 1708 1184 103

Best gap 1698 1164 108

Table 10: Overview results for “multiple knapsack” instances

• had the overall best performance, which is measured as the lowest run time
(if one of the algorithm terminated within the time limit) or the lowest gap
(if each algorithm hit the time limit)

• found the best dual bound from the linear programming relaxation among
the three algorithms

• found the best primal bound, i. e., the best solution, among the three algo-
rithms

• had the overall lowest optimality gap among the three algorithms

Draws between the algorithms were counted. Note that each instance is run in
three permutations, therefore there are a total of 1800 multiple knapsack, 690 list
coloring, and 750 machine scheduling instances.

conclusion

The experimental results show that the heterogeneous aggregation methodology
may lead to improved dual bounds in the branch & bound process depending
on the problem class and on the implementation and framework used for the

152 various applications of heterogeneous aggregation

GCG (plain) GCG (comparable) GCG (het. aggr.)

Best performance 445 338 278

Best dual bound 567 563 599

Best primal bound 635 557 469

Best gap 606 528 479

Table 11: Overview results for “list coloring” instances

GCG (plain) GCG (comparable) GCG (het. aggr.)

Best performance 436 329 53

Best dual bound 586 555 360

Best primal bound 664 596 276

Best gap 623 559 297

Table 12: Overview results for “machine scheduling” instances

method. With the dedicated multiple knapsack solvers some improvement could
be observed, when the knapsack capacities were similar. This does fit the intuition
that in these cases more can be gained by reusing a certain solution for other –
similar – subproblems. But on the broad majority of instances only a minor im-
provement could be observed. While the multiple knapsack problem seems to be
not exceptionally suited for the heterogeneous aggregation technique, it would be
interesting to try out dedicated algorithms for other suitable problems. For exam-
ple the list coloring problem might turn out to be a good candidate as the generic
GCG implementation obtained a decent dual bound improvement on these.

For the generic GCG implementation one quickly sees that the new method
prevents GCG’s heuristics from finding good primal solutions, leading to overall
worse performance. To make the implementation suitable for a general purpose
solver it would therefore be of great importance to design new heuristics specially
designed for dealing with the modified problem structure. These – and likely other
– implementational improvements are needed before this method can be used as
the method of choice in some generic column generation solver framework.

9
S U M M A RY A N D O U T L O O K

This thesis studied combinatorial optimization problems containing matching struc-
tures that can be exploited in order to decompose the larger problem into smaller
parts. In many cases such a decomposition can be solved more efficiently. Algo-
rithms that can hold up to this promise are presented for several variations of such
decompositions and compared on various instances – some taken from real world
examples and some artificial.

Chapter 2 presents results from matching theory which form the foundation for
the methods of the later chapters. One of the most fundamental concepts here is the
partial transversal polytope, representing the matchable subsets of vertices from
one side of a bipartite graph. Multiple equivalent representations of this polytope
are shown. It is shown how the partial transversal polytope can be separated and
how polymatroid theory can be used to derive the facets of this polytope. These
theoretical insights turn out to be applicable in many practical settings. In addition
to the theory about the partial transversal polytope it is shown that these results
can not be easily adapted for popular matchings, making them less appealing
as a subproblem in a larger application. Furthermore several NP-hardness results
regarding matching problems in bipartite hypergraphs are presented. Even in very
restricted settings these problems turn out to be NP-hard.

In Chapter 4 it is shown that a Benders’ decomposition where the subproblem
is a bipartite matching problem, can be seen as an algorithm that separates the
partial transversal polytope. This knowledge is then used to create an algorithmic
framework that is more efficient than a direct application of the Benders’ algorithm.
It turns out that these findings can be transferred to the case where the subprob-
lem is a bipartite hypergraph matching problem. The methods presented here are
rather generic and the reader may find similar structures in her problems. Using
the given theory may enable her to fit these algorithms to many other applications,
even if their structure does not exactly match those presented in this thesis.

Chapter 5 deals with column generation formulations having multiple similar
subproblems. If these subproblems are not fully symmetric but solutions for one
subproblem are likely to be feasible for other subproblems it is shown how the sub-
problems can be aggregated such that the aggregated problem can still be solved
to optimality. The key ingredient here is again the partial transversal polytope that
is used to ensure that subproblem solutions can be matched to their respective sub-
problems. Some difficulties here arise regarding changes in the pricing problem. A
major theoretical contribution here is given by theorem 5.7 which grants that the
pricing problem does not need to increase in complexity when using the proposed
heterogeneous aggregation.

The theoretical results from Chapter 4 are applied to various timetabling prob-
lems in Chapter 6. The computational results show that in some settings using
Benders’ decomposition can yield superior algorithms as opposed to a more di-
rect integer programming formulation. It is furthermore demonstrated that the
improvements that could be derived from the theory about partial transversals
turn out to be beneficial in terms of algorithm performance.

153

154 summary and outlook

Example applications for the heterogeneous aggregation from Chapter 5 are
demonstrated in Chapters 7 and 8. The multi-stage train formation problem from
Chapter 7 demonstrates a complex real world application that can be modeled well
using a column generation formulation. For this formulation it turns out that one
can either use a compact formulation that is equivalent to the column generation
formulation or one can solve the column generation formulation directly or using
heterogeneous aggregation. Chapter 8 gives more examples for combinatorial opti-
mization problems – the multiple knapsack problem, the list coloring, problem and
a machine scheduling problem with variable machine speeds – for which hetero-
geneous aggregation can be applied. Experiments using a special purpose solver
for the multiple knapsack problem as well as a generic implementation for hetero-
geneous aggregation are performed on various instances. It turns out that these
implementations are in general not sufficient to consistently outperform the un-
aggregated column generation algorithm that was used for comparison. For some
instances slight performance benefits could be observed, indicating that heteroge-
neous aggregation might be a fruitful direction for future research.

The research shown in this thesis opens up multiple directions for future inves-
tigations. Here the partial transversal polytope was used to deal with matchings
as subproblems of larger integer programs. An open question now is whether
these findings can be transfered to other kinds of subproblems. The maximum
flow problem for example generalizes the bipartite maximum matching and also
has an integral linear programming formulation. It would be interesting to see
if there are practical applications where a subproblem turns out to be maximum
flow problem and that can be decomposed in a way similar to, e. g., the timetabling
problems from Chapter 6.

The heterogeneous aggregation methodology did not perform overly well in the
experiments of Chapter 8. At least partially this can be attributed to the fact that
implementations used for the presented experiments are not as mature as the al-
gorithms they were compared to. One particular direction in which our implemen-
tations may likely benefit from advances are primal heuristics that are tailored to-
wards heterogeneous aggregation. Furthermore other structural properties might
exist that allow for a more efficient implementation.

In a similar way the Benders’ type algorithms used for the timetabling prob-
lems in Chapter 6 suffered from not finding good enough primal solutions. Primal
heuristics that can exploit the matching structure of the subproblem might result
in even better algorithm performance.

Part III

A P P E N D I X

A
E X P E R I M E N TA L R E S U LT S O N T H E T I M E TA B L I N G
I N S TA N C E S

This appendix contains more detailed solver statistics with regard to each instance
used for the experiments of chapter 6. The results on the Lectio instances are omit-
ted as they were already published by Sørensen and Dahms (2014) [149].

udine instances

The Udine dataset is split into two groups, the “ITC” instances and the “Erlangen”
instances. All instances were evaluated using the room capacity condition either
as hard constraints (thereby removing the need for optimality cuts in the Benders’
algorithms) or as soft constraints. The three indexed formulation is compared to
the Benders’ formulation, which in turn is tried once with the feasibility cuts from
using the maximum matching subproblem together with the RISS algorithm and
once with the feasibility cuts resulting from the subproblems Farkas vector.

All algorithms were run with a time limit of 3600 seconds and the solver was set
to terminate once the optimality gap reached a value of less than 1%. Here Gurobi
uses for the optimality gap the definition

|lb− obj|
|obj|

where “lb” is the best lower bound (as the problems were formulated with a mini-
mization objective) and “obj” the objective value of the best feasible solution found
so far.

For each instance and each model, the total solve run time (in wall clock seconds)
and the number of branch & bound nodes is reported. For the Benders’ algorithms
also the number of created cuts (feasibility as well as optimality cuts) is given. For
more details on the compared algorithms see Chapter 6.

Tables 13 and 14 show the statistics from solving the “ITC” instances either with
hard constrained or soft constrained room matching. Tables 15 and 16 show the
respective statistics for the “Erlangen” instances.

157

158 experimental results on the timetabling instances

Instance 3 ind. model Benders’ (RISS) Benders’ (Farkas)

Time Nodes Time Nodes Cuts Time Nodes Cuts

Fis0506-1 1.29 0 3600.01 168198 65599 3600.01 103530 9937

Fis0506-2 1.06 0 10.02 1005 2063 583.49 71699 11959

Ing0203-1 139.18 256 2.35 0 17 2.56 0 6

Ing0203-2 180.19 121 5.10 0 33 6.20 0 20

Ing0203-3 12.73 0 1.42 0 24 2.44 0 12

Ing0304-1 25.97 0 45.65 602 131 50.41 602 61

Ing0304-2 38.66 0 8.05 0 34 8.76 0 20

Ing0304-3 26.23 0 1.54 0 21 2.03 0 4

Ing0405-1 19.17 0 10.57 284 171 44.71 2424 472

Ing0405-2 127.83 0 12.36 570 377 19.69 715 302

Ing0405-3 9.47 0 3.91 347 153 2.10 16 15

Ing0506-1 42.96 0 62.46 3650 2734 31.67 1233 303

Ing0506-2 691.91 524 72.37 4419 3513 487.78 44395 3869

Ing0506-3 13.22 0 3.93 272 126 4.72 348 65

Ing0607-1 24.48 0 10.82 94 73 66.92 603 110

Ing0607-2 1048.50 629 61.19 3814 2802 105.75 7976 1440

Ing0607-3 12.68 0 3.30 220 92 6.74 578 169

Ing0708-1 222.82 27 9.16 143 82 4.57 0 16

Let0304-1 17.84 0 3.84 0 16 8.50 19 10

Let0405-1 3600.00 9342 3600.00 47800 1284 3600.00 48600 745

Let0506-2 3604.39 2443 2883.88 5902 924 261.99 1159 155

Table 13: Solver statistics on the Udine “ITC” instances with hard constrained room match-
ing

A.1 udine instances 159

Instance 3 ind. model Benders’ (RISS) Benders’ (Farkas)

Time Nodes Time Nodes Cuts Time Nodes Cuts

Fis0506-1 1.79 0 16.89 1716 3445 201.35 19183 6423

Fis0506-2 2.06 0 3.63 507 761 49.73 7570 3565

Ing0203-1 485.20 282 2.68 0 12 2.53 0 8

Ing0203-2 130.87 0 7.40 0 41 2.64 0 7

Ing0203-3 19.74 0 1.72 0 32 1.50 0 12

Ing0304-1 30.71 0 3600.00 118000 575 3600.00 127000 319

Ing0304-2 68.10 0 4.83 0 27 4.91 0 14

Ing0304-3 22.94 0 1.65 0 7 1.46 0 1

Ing0405-1 63.44 0 21.75 484 382 60.34 953 241

Ing0405-2 54.41 0 42.43 1861 2223 28.25 1238 297

Ing0405-3 18.70 0 1.65 0 33 8.15 305 107

Ing0506-1 50.54 0 246.03 3728 4744 20.39 858 325

Ing0506-2 76.75 0 24.77 883 1019 108.47 6757 1767

Ing0506-3 18.21 0 2.10 0 45 1.52 0 50

Ing0607-1 32.12 0 6.35 0 53 3.00 0 12

Ing0607-2 434.92 0 70.28 3013 3113 334.59 11543 2603

Ing0607-3 22.17 0 4.59 328 116 1.28 0 20

Ing0708-1 71.35 0 2.66 0 41 2.48 0 30

Let0304-1 6.82 0 5.85 0 16 5.71 0 12

Let0405-1 3600.01 5016 3600.00 26985 1953 3600.00 23500 780

Let0506-2 3600.01 3798 3470.67 7022 748 3600.00 6700 801

Table 14: Solver statistics on the Udine “ITC” instances with soft constrained room match-
ing

Instance 3 ind. model Benders’ (RISS) Benders’ (Farkas)

Time Nodes Time Nodes Cuts Time Nodes Cuts

erlangen2011_2 405.33 815 385.98 2465 1257 3600.00 53107 952

erlangen2012_1 42.77 0 856.57 1365 3744 3600.00 8567 3509

erlangen2012_2 81.56 0 2305.48 1202 4159 3600.00 2593 1254

erlangen2013_1 346.37 331 530.56 604 649 1246.73 1969 519

erlangen2013_2 87.01 0 1073.92 1002 2163 1406.51 2602 1685

erlangen2014_1 176.49 0 221.09 315 344 567.35 1002 267

Table 15: Solver statistics on the Udine “Erlangen” instances with hard constrained room
matching

160 experimental results on the timetabling instances

Instance 3 ind. model Benders’ (RISS) Benders’ (Farkas)

Time Nodes Time Nodes Cuts Time Nodes Cuts

erlangen2011_2 282.29 487 3600.01 66418 1099 3600.00 53845 917

erlangen2012_1 214.05 0 3600.00 12042 5904 3600.00 8815 3295

erlangen2012_2 107.23 0 3306.11 2776 4139 3600.00 4210 1370

erlangen2013_1 3600.47 1133 3600.00 10619 712 3600.00 9778 575

erlangen2013_2 208.74 0 924.62 902 2274 1552.73 2702 1667

erlangen2014_1 322.58 0 354.83 602 486 652.19 1281 324

Table 16: Solver statistics on the Udine “Erlangen” instances with soft constrained room
matching

B
E X P E R I M E N TA L R E S U LT S O N A G G R E G AT I O N I N S TA N C E S

dedicated multiple knapsack solver

Table 17 shows the results that were achieved by the dedicated multiple knapsack
algorithms on several instances (the details about the instances and the algorithms
can be found in Chapter 8). Each instance set consisted of 20 instances. The table
shows

• median run times in seconds

• how often each algorithm found an optimal solution

• how often each algorithm had the best overall performance (either measured
in terms of runtime, or of the remaining gap if no algorithm managed to find
an optimal solution)

• how often each algorithm found the best dual bound of the two

• how often each algorithm found the best primal bound of the two

• how often each algorithm terminated with the best optimality gap of the two

In statistics where a “winner” was determined, draws were counted towards both
algorithms.

UnCor WeakCor StrongCor

no agg. agg. no agg. agg. no agg. agg.

Similar Capacities

45 items, 15 bins

Median time 7.54 9.69 9.47 7.22 600.00 600.00

Optimal solution found 17 19 17 17 7 9

Best performance 10 11 8 15 12 17

Best dual bound 18 20 20 20 17 18

Best primal bound 18 20 20 20 17 18

Best gap 18 20 20 20 17 18

48 items, 12 bins

Median time 6.52 6.89 27.91 20.00 600.00 600.00

Optimal solution found 20 19 12 13 4 4

Best performance 11 9 11 12 13 18

Best dual bound 20 19 17 18 16 18

Best primal bound 20 19 17 17 17 19

Best gap 20 19 16 17 15 19

161

162 experimental results on aggregation instances

UnCor WeakCor StrongCor

no agg. agg. no agg. agg. no agg. agg.

60 items, 10 bins

Median time 17.16 15.46 11.90 11.52 600.00 600.00

Optimal solution found 20 20 16 16 8 8

Best performance 8 12 10 12 10 14

Best dual bound 20 20 18 18 15 15

Best primal bound 20 20 18 19 13 16

Best gap 20 20 18 18 13 15

75 items, 15 bins

Median time 48.13 46.67 34.56 31.59 600.03 600.07

Optimal solution found 16 18 15 15 2 0

Best performance 11 10 12 8 11 13

Best dual bound 17 19 16 15 19 12

Best primal bound 18 19 17 15 11 14

Best gap 17 19 16 15 11 13

Dissimilar Capacities

45 items, 15 bins

Median time 9.50 9.09 12.93 16.03 14.36 10.99

Optimal solution found 19 20 17 14 17 19

Best performance 6 14 14 7 11 9

Best dual bound 19 20 18 16 17 19

Best primal bound 19 20 18 15 17 19

Best gap 19 20 18 15 17 19

48 items, 12 bins

Median time 9.38 9.87 11.32 9.06 13.50 10.08

Optimal solution found 19 20 16 16 18 19

Best performance 10 10 9 13 6 14

Best dual bound 19 20 19 18 18 19

Best primal bound 19 20 18 19 18 19

Best gap 19 20 18 19 18 19

60 items, 10 bins

Median time 13.95 13.00 20.11 18.96 11.41 10.50

Optimal solution found 20 20 17 17 20 20

Best performance 7 13 11 9 10 10

Best dual bound 20 20 17 17 20 20

Best primal bound 20 20 18 17 20 20

Best gap 20 20 17 17 20 20

B.2 generic implementation 163

UnCor WeakCor StrongCor

no agg. agg. no agg. agg. no agg. agg.

75 items, 15 bins

Median time 32.61 30.53 44.53 31.82 31.09 27.11

Optimal solution found 19 19 15 13 20 20

Best performance 6 14 8 14 8 12

Best dual bound 19 19 18 17 20 20

Best primal bound 19 19 17 17 20 20

Best gap 19 19 17 17 20 20

Table 17: Results of the dedicated multiple knapsack solvers (without and with heteroge-
neous aggregation)

generic implementation

GCG (plain) GCG (comparable) GCG (het. aggr.)

Multiple Knapsack (200 items, DissCap, StrongCor)

Median gap 0.15 0.29 5.92

Best performance 136 71 16

Best dual bound 149 148 111

Best primal bound 137 75 15

Best gap 136 71 16

Multiple Knapsack (200 items, SimCap, StrongCor)

Median gap 0.20 0.28 9.44

Best performance 136 75 15

Best dual bound 141 138 82

Best primal bound 139 79 12

Best gap 136 75 15

Multiple Knapsack (200 items, DissCap, UnCor)

Median gap 0.10 0.23 4.12

Best performance 144 83 12

Best dual bound 145 137 78

Best primal bound 146 85 11

Best gap 144 83 12

Multiple Knapsack (200 items, SimCap, UnCor)

Median gap 0.11 0.20 3.65

Best performance 145 86 4

Best dual bound 139 139 97

Best primal bound 145 86 4

Best gap 145 86 4

164 experimental results on aggregation instances

GCG (plain) GCG (comparable) GCG (het. aggr.)

Multiple Knapsack (200 items, DissCap, WeakCor)

Median gap 0.03 0.49 4.11

Best performance 136 46 17

Best dual bound 146 137 85

Best primal bound 137 49 18

Best gap 136 46 17

Multiple Knapsack (200 items, SimCap, WeakCor)

Median gap 0.03 0.49 3.67

Best performance 133 45 19

Best dual bound 143 135 86

Best primal bound 134 48 20

Best gap 133 45 19

Multiple Knapsack (500 items, DissCap, StrongCor)

Median gap 0.17 0.15 3495.15

Best performance 135 141 2

Best dual bound 137 142 59

Best primal bound 136 142 1

Best gap 135 141 2

Multiple Knapsack (500 items, SimCap, StrongCor)

Median gap 0.22 0.20 7715.96

Best performance 138 130 14

Best dual bound 138 137 46

Best primal bound 139 133 13

Best gap 138 130 14

Multiple Knapsack (500 items, DissCap, UnCor)

Median gap 0.11 0.13 2701.89

Best performance 147 142 3

Best dual bound 150 147 40

Best primal bound 147 142 3

Best gap 147 142 3

Multiple Knapsack (500 items, SimCap, UnCor)

Median gap 0.08 0.11 4.52

Best performance 149 138 0

Best dual bound 149 145 83

Best primal bound 149 138 0

Best gap 149 138 0

B.2 generic implementation 165

GCG (plain) GCG (comparable) GCG (het. aggr.)

Multiple Knapsack (500 items, DissCap, WeakCor)

Median gap 0.22 0.28 4.12

Best performance 148 103 3

Best dual bound 150 146 103

Best primal bound 149 103 3

Best gap 149 103 3

Multiple Knapsack (500 items, SimCap, WeakCor)

Median gap 0.22 0.28 4.51

Best performance 149 104 3

Best dual bound 150 145 100

Best primal bound 150 104 3

Best gap 150 104 3

List coloring (0.05)

Median gap 0.00 30.26 49.93

Best performance 86 61 68

Best dual bound 115 108 121

Best primal bound 124 108 111

Best gap 117 100 110

List coloring (0.1)

Median gap 6.00 21.71 30.26

Best performance 87 73 65

Best dual bound 115 113 125

Best primal bound 130 120 97

Best gap 122 113 99

List coloring (0.2)

Median gap 15.21 14.00 31.51

Best performance 91 73 54

Best dual bound 113 117 118

Best primal bound 125 116 91

Best gap 118 109 92

List coloring (0.5)

Median gap 0.00 2.04 9.68

Best performance 86 66 40

Best dual bound 111 114 127

Best primal bound 126 104 88

Best gap 123 103 94

166 experimental results on aggregation instances

GCG (plain) GCG (comparable) GCG (het. aggr.)

Machine scheduling (A)

Median gap 0.00 0.00 4.11

Best performance 103 54 22

Best dual bound 119 118 79

Best primal bound 141 112 60

Best gap 130 107 62

Machine scheduling (B)

Median gap 0.00 0.70 10.59

Best performance 95 53 19

Best dual bound 117 98 70

Best primal bound 127 100 58

Best gap 114 89 62

Machine scheduling (C)

Median gap 0.00 0.00 ∞

Best performance 86 70 3

Best dual bound 120 109 62

Best primal bound 143 120 41

Best gap 137 113 47

Machine scheduling (D)

Median gap 0.00 0.00 ∞

Best performance 84 71 5

Best dual bound 113 110 68

Best primal bound 125 129 48

Best gap 123 125 55

Machine scheduling (E)

Median gap 0.00 0.00 0.28

Best performance 68 81 4

Best dual bound 117 120 81

Best primal bound 128 135 69

Best gap 119 125 71

Table 18: Solver quality statistics on various instances, applicable for heterogeneous aggre-
gation

B I B L I O G R A P H Y

[1] Abdullah, S., Ahmadi, S., Burke, E. K., Dror, M., and McCollum, B. A tabu-
based large neighbourhood search methodology for the capacitated exami-
nation timetabling problem. Journal of the Operational Research Society, 58(11):
1494–1502, 2007. (Cited on page 93.)

[2] Abraham, D. J., Irving, R. W., Kavitha, T., and Mehlhorn, K. Popular match-
ings. SIAM Journal on Computing, 37(4):1030–1045, 2007. (Cited on pages 36,
37, and 38.)

[3] Abramson, D. Constructing school timetables using simulated annealing:
sequential and parallel algorithms. Management science, 37(1):98–113, 1991.
(Cited on page 93.)

[4] Achterberg, T. SCIP: Solving constraint integer programs. Mathematical Pro-
gramming Computation, 1(1):1–41, 2009. (Cited on page 149.)

[5] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. Network Flows: Theory, Algo-
rithms, and Applications. Prentice-Hall, Inc., New Jersey, 1993. ISBN 0-13-
617549-X. (Cited on pages 10, 80, and 137.)

[6] Al-Yakoob, S. M. and Sherali, H. D. Mathematical programming models
and algorithms for a class–faculty assignment problem. European Journal of
Operational Research, 173(2):488–507, 2006. (Cited on page 93.)

[7] Al-Yakoob, S. M. and Sherali, H. D. Mathematical models and algorithms
for a high school timetabling problem. Computers & Operations Research, 2015.
(Cited on pages 92 and 93.)

[8] Aladag, C. H., Hocaoglu, G., and Basaran, M. A. The effect of neighborhood
structures on tabu search algorithm in solving course timetabling problem.
Expert Systems with Applications, 36(10):12349–12356, 2009. (Cited on page 93.)

[9] Alvarez-Valdés, R., Martin, G., and Tamarit, J. Constructing good solutions
for the spanish school timetabling problem. Journal of the Operational Research
Society, pages 1203–1215, 1996. (Cited on page 92.)

[10] Alvarez-Valdés, R., Martin, G., and Tamarit, J. M. Hores: A timetabling
system for spanish secondary schools. Top, 3(1):137–144, 1995. (Cited on
page 92.)

[11] Alvarez-Valdés, R., Crespo, E., and Tamarit, J. M. Design and implementa-
tion of a course scheduling system using tabu search. European Journal of
Operational Research, 137(3):512–523, 2002. (Cited on pages 92 and 93.)

[12] Alvarez-Valdés, R., Parreño, F., and Tamarit, J. M. A tabu search algorithm
for assigning teachers to courses. Top, 10(2):239–259, 2002. (Cited on pages 92

and 93.)

167

168 bibliography

[13] Amaldi, E., Pfetsch, M. E., and Trotter, L. E., Jr. On the maximum feasible
subsystem problem, IISs and IIS-hypergraphs. Mathematical Programming, 95

(3):533–554, 2003. (Cited on page 53.)

[14] Assad, A. A. Analysis of rail classification policies. Infor, 21(4):293–314, 1983.
(Cited on page 127.)

[15] Avella, P., Bernardo, D., Salerno, S., and Vasil’ev, I. A computational study of
local search algorithms for italian high-school timetabling. Journal of Heuris-
tics, 13(6):543–556, 2007. (Cited on page 92.)

[16] Azevedo, F. and Barahona, P. Timetabling in constraint logic programming.
In Liebowitz, J., editor, Proceedings of the 2nd World Congress on Expert Systems.
Cognizant Communication Corp., Elmsford, NY, 1994. (Cited on page 93.)

[17] Balas, E. and Pulleyblank, W. The perfectly matchable subgraph polytope of
a bipartite graph. Networks, 13(4):495–516, 1983. (Cited on pages 31 and 32.)

[18] Balas, E. and Pulleyblank, W. R. The perfectly matchable subgraph polytope
of an arbitrary graph. Combinatorica, 9(4):321–337, 1989. (Cited on pages 31

and 32.)

[19] Barnhart, C., Jin, H., and Vance, P. H. Railroad blocking: A network design
application. Operations Research, 48(4):603–614, 2000. (Cited on page 128.)

[20] Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., and
Vance, P. H. Branch-and-price: Column generation for solving huge integer
programs. Operations research, 46(3):316–329, 1998. (Cited on page 149.)

[21] Beligiannis, G. N., Moschopoulos, C. N., Kaperonis, G. P., and Likothanassis,
S. D. Applying evolutionary computation to the school timetabling prob-
lem: The greek case. Computers & Operations Research, 35(4):1265–1280, 2008.
(Cited on page 92.)

[22] Beligiannis, G. N., Moschopoulos, C., and Likothanassis, S. D. A genetic
algorithm approach to school timetabling. Journal of the Operational Research
Society, 60(1):23–42, 2009. (Cited on page 92.)

[23] Bellman, R. On a routing problem. Quarterly of Applied Mathematics, 16:87–90,
1958. (Cited on page 134.)

[24] Benders, J. F. Partitioning procedures for solving mixed-variables pro-
gramming problems. Numerische Mathematik, 4(1):238–252, 1962. (Cited on
pages 41 and 52.)

[25] Berthold, T. Heuristics of the branch-cut-and-price-framework SCIP. In Kalc-
sics, J. and Nickel, S., editors, Operations Research Proceedings 2007, pages
31–36. Springer, Berlin, Heidelberg, 2008. (Cited on page 17.)

[26] Bertsimas, D. and Tsitsiklis, J. N. Introduction to linear optimization, volume 6.
Athena Scientific, Belmont, MA, 1997. (Cited on page 15.)

[27] Bertsimas, D. and Weismantel, R. Optimization over integers, volume 13. Dy-
namic Ideas, Belmont, MA, 2005. (Cited on pages 19 and 20.)

bibliography 169

[28] Beygang, K., Krumke, S. O., and Dahms, F. Train marshalling problem – algo-
rithms and bounds. Technische Universität Kaiserslautern, Fachbereich Math-
ematik, 2010. (Cited on page 128.)

[29] Birbas, T., Daskalaki, S., and Housos, E. Timetabling for greek high schools.
Journal of the Operational Research Society, 48(12):1191–1200, 1997. (Cited on
pages 92 and 93.)

[30] Biró, M., Hujter, M., and Tuza, Z. Precoloring extension. I. Interval graphs.
Discrete Mathematics, 100(1-3):267–279, 1992. (Cited on pages 35 and 127.)

[31] Bodin, L. D., Golden, B. L., Schuster, A. D., and Romig, W. A model for
the blocking of trains. Transportation Research Part B: Methodological, 14(1-2):
115–120, 1980. (Cited on page 127.)

[32] Bohlin, M., Flier, H., Maue, J., and Mihalák, M. Hump yard track allocation
with temporary car storage. In Proc. 4th Internat. Seminar on Railway Oper.
Modelling and Analysis, pages 38–51, 2011. (Cited on pages 125, 127, and 131.)

[33] Bohlin, M., Flier, H., Maue, J., and Mihalák, M. Track Allocation in
Freight-Train Classification with Mixed Tracks. In Proc. 11th Workshop on
Algorithmic Approaches for Transportation Modelling, Optim., and Systems (AT-
MOS 2011), volume 20, pages 38–51, Dagstuhl, Germany, September 2011.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. (Cited on pages 125, 127,
and 131.)

[34] Bohlin, M., Dahms, F., Flier, H., and Gestrelius, S. Optimal Freight Train
Classification using Column Generation. In Proc. 12th Workshop on Algo-
rithmic Approaches for Transportation Modelling, Optim., and Systems (ATMOS
2012), volume 25, pages 10–22, Dagstuhl, Germany, 2012. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik. (Cited on pages v, 125, and 131.)

[35] Bohlin, M., Gestrelius, S., Dahms, F., Mihalák, M., and Flier, H. Optimized
shunting with mixed-usage tracks. 2013. Technical Report T2013:06. (Cited
on pages v, 135, and 136.)

[36] Bohlin, M., Gestrelius, S., Dahms, F., Mihalák, M., and Flier, H. Optimization
methods for multistage freight train formation. Transportation Science, 2015.
(Cited on pages v, xi, 125, 126, 127, 135, and 138.)

[37] Bonomo, F. and Cecowski, M. Between coloring and list-coloring: µ-coloring.
Electronic Notes in Discrete Mathematics, 19:117–123, 2005. (Cited on page 127.)

[38] Bonutti, A., De Cesco, F., Di Gaspero, L., and Schaerf, A. Benchmarking
curriculum-based course timetabling: formulations, data formats, instances,
validation, visualization, and results. Annals of Operations Research, 194(1):
59–70, 2012. (Cited on pages 92 and 97.)

[39] Boysen, N., Fliedner, M., Jaehn, F., and Pesch, E. Shunting yard operations:
Theoretical aspects and applications. EJOR, 220(1):1–14, 2012. (Cited on
page 127.)

170 bibliography

[40] Burke, E. and Ross, P., editors. Practice and Theory of Automated Timetabling,
volume 1153 of Lecture notes in computer science. Springer, Berlin, Heidelberg,
New York, 1996. (Cited on page 91.)

[41] Burke, E. K., Marecek, J., Parkes, A. J., and Rudová, H. On a clique-based
integer programming formulation of vertex colouring with applications in
course timetabling. arXiv preprint arXiv:0710.3603, 2007. (Cited on page 93.)

[42] Burke, E. K., Mareček, J., Parkes, A. J., and Rudová, H. Penalising patterns in
timetables: Novel integer programming formulations. Operations Research
Proceedings 2007, pages 409–414. Springer, Berlin, Heidelberg, 2008. (Cited
on page 93.)

[43] Burke, E. K. and Petrovic, S. Recent research directions in automated
timetabling. European Journal of Operational Research, 140(2):266–280, 2002.
(Cited on page 92.)

[44] Carrasco, M. P. and Pato, M. V. A potts neural network heuristic for the
class/teacher timetabling problem. In Resende, M. G. C. and Pinho de Sousa,
J., editors, Metaheuristics: Computer Decision-Making, pages 173–186. Springer,
Berlin, Heidelberg, 2004. (Cited on page 93.)

[45] Carrasco, M. P. and Pato, M. V. A comparison of discrete and continuous neu-
ral network approaches to solve the class/teacher timetabling problem. Eu-
ropean Journal of Operational Research, 153(1):65–79, 2004. (Cited on page 93.)

[46] Carter, M. W. and Laporte, G. Recent developments in practical course
timetabling. In Practice and Theory of Automated Timetabling II, pages 3–19.
Springer, 1998. (Cited on pages 91 and 92.)

[47] Codato, G. and Fischetti, M. Combinatorial benders’ cuts for mixed-integer
linear programming. Operations Research, 54(4):756–766, 2006. (Cited on
pages 52 and 53.)

[48] Coll, P., Marenco, J., Díaz, I. M., and Zabala, P. Facets of the graph color-
ing polytope. Annals of Operations Research, 116(1-4):79–90, 2002. (Cited on
page 96.)

[49] Colorni, A., Dorigo, M., and Maniezzo, V. Metaheuristics for high school
timetabling. Computational optimization and applications, 9(3):275–298, 1998.
(Cited on page 93.)

[50] Cook, S. A. The complexity of theorem-proving procedures. In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages
151–158. ACM, New York, 1971. (Cited on page 6.)

[51] Corne, D., Ross, P., and Fang, H.-L. Evolutionary timetabling: Practice,
prospects and work in progress. In Proceedings of the UK Planning and Schedul-
ing SIG Workshop. Strahclyde, 1994. (Cited on page 92.)

[52] Cramer, G. Introduction à l’analyse des lignes courbes algébriques. Europeana:
Bibliothèque de Genève, 1750. (Cited on page 19.)

bibliography 171

[53] Dahlhaus, E., Horak, P., Miller, M., and Ryan, J. F. The train marshalling prob-
lem. Discrete Applied Mathematics, 103(1):41–54, 2000. (Cited on page 128.)

[54] Dahms, F. Train marshalling problems – algorithms and complexity.
Diploma thesis, TU Kaiserslautern, 2010. (Cited on page 128.)

[55] Dantzig, G. B. Linear programming. Operations Research, 50(1):42–47, 2002.
(Cited on page 15.)

[56] Dantzig, G. B. and Wolfe, P. Decomposition principle for linear programs.
Operations research, 8(1):101–111, 1960. (Cited on page 41.)

[57] Dasgupta, S., Papadimitriou, C. H., and Vazirani, U. Algorithms. McGraw-
Hill, Inc., New York, 2006. (Cited on page 71.)

[58] Daskalaki, S. and Birbas, T. Efficient solutions for a university timetabling
problem through integer programming. European Journal of Operational Re-
search, 160(1):106–120, 2005. (Cited on page 93.)

[59] de Haan, P., Landman, R., Post, G., and Ruizenaar, H. A case study for
timetabling in a dutch secondary school. In Burke, E. and Rudová, H., ed-
itors, Practice and Theory of Automated Timetabling VI, volume 3867 of Theo-
retical Computer Science and General Issues, pages 267–279. Springer, Berlin,
Heidelberg, 2007. (Cited on page 92.)

[60] de Werra, D. The combinatorics of timetabling. European Journal of Operational
Research, 96(3):504–513, 1997. (Cited on page 91.)

[61] de Werra, D., Asratian, A. S., and Durand, S. Complexity of some spe-
cial types of timetabling problems. Journal of Scheduling, 5(2):171–183, 2002.
(Cited on page 91.)

[62] de Werra, D. An introduction to timetabling. European Journal of Operational
Research, 19(2):151–162, 1985. (Cited on page 92.)

[63] Desaulniers, G., Desrosiers, J., and Solomon, M. M., editors. Column Genera-
tion. Springer, US, 1st edition, 2005. (Cited on page 41.)

[64] Desrochers, M. and Soumis, F. A column generation approach to the ur-
ban transit crew scheduling problem. Transportation Science, 23(1):1–13, 1989.
(Cited on page 149.)

[65] Edmonds, J. Submodular functions, matroids, and certain polyhedra. Com-
binatorial Structures and Their Applications, pages 69–87, 1970. (Cited on
pages 12 and 13.)

[66] Edmonds, J. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):
449–467, 1965. (Cited on pages 22 and 24.)

[67] Edmonds, J. and Fulkerson, D. R. Transversals and matroid partition. Jour-
nal of Research of the National Bureau of Standards, Section B: Mathematics and
Mathematical Physics, 69B(3), 1965. (Cited on page 28.)

172 bibliography

[68] Elmohamed, M. S., Coddington, P., and Fox, G. A comparison of annealing
techniques for academic course scheduling. In Burke, E. and Carter, M.,
editors, Practice and Theory of Automated Timetabling II, pages 92–112. Springer,
Berlin, Heidelberg, 1998. (Cited on page 93.)

[69] Farkas, J. Theorie der einfachen Ungleichungen. Journal für die reine und
angewandte Mathematik, 124:1–27, 1902. (Cited on pages 11 and 15.)

[70] Fernández, C. and Santos, M. A non-standard genetic algorithm approach
to solve constrained school timetabling problems. In Moreno Diaz, R. and
Pichler, F., editors, Computer Aided Systems Theory – EUROCAST 2003, vol-
ume 2809 of Lecture Notes in Computer Science, pages 26–37. Springer, Berlin,
Heidelberg, 2003. (Cited on page 92.)

[71] Ford, L. R. and Fulkerson, D. R. Maximal flow through a network. Canadian
journal of Mathematics, 8(3):399–404, 1956. (Cited on page 10.)

[72] Frangouli, H., Harmandas, V., and Stamatopoulos, P. UTSE: Construction of
optimum timetables for university courses – a clp based approach. In Marien,
A. and Roth, A., editors, Proceedings of the Third International Conference on
the Practical Applications of Prolog. Alinmead Software Ltd, 1995. (Cited on
page 93.)

[73] Fukunaga, A. S. A branch-and-bound algorithm for hard multiple knap-
sack problems. Annals of Operations Research, 184(1):97–119, 2011. (Cited on
page 143.)

[74] Gale, D., Kuhn, H. W., and Tucker, A. W. Linear programming and the theory
of games. Activity analysis of production and allocation, 13:317–335, 1951. (Cited
on page 14.)

[75] Gamrath, G. and Lübbecke, M. E. Experiments with a generic Dantzig-Wolfe
decomposition for integer programs. In Festa, P., editor, Experimental algo-
rithms, volume 6049 of Theoretical Computer Science and General Issues, pages
239–252. Springer, Berlin, Heidelberg, 2010. (Cited on pages 141 and 150.)

[76] Gärdenfors, P. Match making: assignments based on bilateral preferences.
Behavioral Science, 20(3):166–173, 1975. (Cited on page 36.)

[77] Garey, M. R. and Johnson, D. S. Computer and intractability. A Series of Books
in the Mathematical Sciences. W. H. Freeman and Company, New York, 1979.
(Cited on pages 5, 6, 24, 35, 73, and 134.)

[78] Gatto, M., Maue, J., Mihalák, M., and Widmayer, P. Shunting for dummies:
An introductory algorithmic survey. In Robust and Online Large-Scale Opti-
mization, volume 5868 of LNCS, pages 310–337. Springer, Berlin Heidelberg,
2009. (Cited on page 127.)

[79] Ghouila-Houri, A. Caractérisation des matrices totalement unimodulaires.
Comptes Rendus de l’Académie des Sciences Paris, 254:1192–1194, 1962. (Cited
on page 20.)

bibliography 173

[80] Gilmore, P. C. and Gomory, R. E. A linear programming approach to the
cutting-stock problem. Operations research, 9(6):849–859, 1961. (Cited on
page 149.)

[81] Gislén, L., Peterson, C., and Söderberg, B. “teachers and classes” with neural
networks. International Journal of Neural Systems, 1(02):167–176, 1989. (Cited
on page 93.)

[82] Gorman, M. F. An application of genetic and tabu searches to the freight
railroad operating plan problem. Annals of operations research, 78:51–69, 1998.
(Cited on page 128.)

[83] Gotlieb, C. C. The construction of class-teacher time-tables. In Popplewell,
C. M., editor, IFIP Congress, pages 73–77. North-Holland, Amsterdam, 1962.
(Cited on page 93.)

[84] Güçlü, T. Ein Spaltengenerierungsansatz für die Zuordnung von Güterzügen.
Master’s thesis, RWTH Aachen University, 2012. (Cited on page 135.)

[85] Guéret, C., Jussien, N., Boizumault, P., and Prins, C. Building university
timetables using constraint logic programming. In Burke, E. and Ross, P.,
editors, Practice and Theory of Automated Timetabling, volume 1153 of Lecture
Notes in Computer Science, pages 130–145. Springer, Berlin, Heidelberg, 1996.
(Cited on page 93.)

[86] Hall, N. G. and Posner, M. E. Generating experimental data for computa-
tional testing with machine scheduling applications. Operations Research, 49

(6):854–865, 2001. (Cited on page 148.)

[87] Hall, P. On the representation of subsets. Journal of the London Mathematical
Society, 10:26–30, 1935. (Cited on page 26.)

[88] Hartog, J. Timetabling on Dutch high schools. PhD thesis, TU Delft, 2007. (Cited
on page 92.)

[89] Harwood, G. B. and Lawless, R. W. Optimizing organizational goals in
assigning faculty teaching schedules. Decision sciences, 6(3):513–524, 1975.
(Cited on page 93.)

[90] Henz, M. and Würtz, J. Using Oz for college timetabling. In Burke, E. and
Ross, P., editors, Practice and Theory of Automated Timetabling, volume 1153 of
Lecture Notes in Computer Science, pages 162–177. Springer, Berlin, Heidelberg,
1996. (Cited on page 93.)

[91] Hertz, A. Tabu search for large scale timetabling problems. European Journal
of Operational Research, 54(1):39–47, 1991. (Cited on page 93.)

[92] Hertz, A. Finding a feasible course schedule using tabu search. Discrete
Applied Mathematics, 35(3):255–270, 1992. (Cited on page 93.)

[93] Hooker, J. N. and Osorio, M. A. Mixed logical-linear programming. Discrete
Applied Mathematics, 96:395–442, 1999. (Cited on page 52.)

[94] Hooker, J. N. and Ottosson, G. Logic-based benders decomposition. Mathe-
matical Programming, 96(1):33–60, 2003. (Cited on page 52.)

174 bibliography

[95] Huntley, C. L., Brown, D. E., Sappington, D. E., and Markowicz, B. P. Freight
routing and scheduling at CSX transportation. Interfaces, 25(3):58–71, 1995.
(Cited on page 128.)

[96] Jacobsen, F., Bortfeldt, A., and Gehring, H. Timetabling at German sec-
ondary schools: tabu search versus constraint programming. In Burke, E.
and Rudová, H., editors, International conference on the practise and theory of
automated timetabling, volume 3867 of Theoretical Computer Science and General
Issues. Springer, Berlin, Heidelberg, 2006. (Cited on pages 92 and 93.)

[97] Jünger, M., Liebling, T. M., Naddef, D., Nemhauser, G. L., Pulleyblank, W. R.,
Reinelt, G., Rinaldi, G., and Wolsey, L. A., editors. 50 Years of Integer Program-
ming 1958-2008: From the Early Years to the State-of-the-art. Springer, Berlin,
Heidelberg, 1st edition, 2009. (Cited on pages 42, 53, 70, and 78.)

[98] Junginger, W. Timetabling in Germany – a survey. Interfaces, 16(4):66–74,
1986. (Cited on page 92.)

[99] Karmarkar, N. A new polynomial-time algorithm for linear programming. In
DeMillo, R., editor, Proceedings of the sixteenth annual ACM symposium on The-
ory of computing, pages 302–311. ACM, New York, 1984. (Cited on page 16.)

[100] Karp, R. M. Reducibility among combinatorial problems. Springer, US, 1972.
(Cited on pages 33, 73, and 95.)

[101] Keaton, M. H. Designing railroad operating plans: A dual adjustment
method for implementing lagrangian relaxation. Transportation science, 26

(4):263–279, 1992. (Cited on page 128.)

[102] Khachiyan, L. G. Polynomial algorithms in linear programming. USSR Com-
putational Mathematics and Mathematical Physics, 20(1):53–72, 1980. (Cited on
page 16.)

[103] Klee, V. and Minty, G. J. How good is the simplex method. Inequalities-III,
pages 159–175, 1972. (Cited on page 15.)

[104] Kőnig, D. Theorie der endlichen und unendlichen Graphen. Akademische
Verlagsgesellschaft, Leipzig, 1936, 1936. (Cited on pages 24 and 26.)

[105] Kwok, L.-F., Kong, S.-C., and Kam, Y.-Y. Timetabling in Hong Kong sec-
ondary schools. Computers & Education, 28(3):173–183, 1997. (Cited on
page 92.)

[106] Lach, G. and Lübbecke, M. Curriculum based course timetabling: Optimal
solutions to the udine benchmark instances. In Burke, E. and Gendreau,
M., editors, Proceedings of the 7th PATAT Conference, volume 194 of Annals of
Operations Research, 2008. (Cited on pages 91 and 93.)

[107] Lach, G. and Lübbecke, M. E. Optimal university course timetables and the
partial transversal polytope. In McGeoch, C. C., editor, Experimental Algo-
rithms, volume 5038 of Theoretical Computer Science and General Issues, pages
235–248. Springer, Berlin, Heidelberg, 2008. (Cited on pages 91, 93, and 103.)

bibliography 175

[108] Lawrie, N. L. An integer linear programming model of a school timetabling
problem. The Computer Journal, 12(4):307–316, 1969. (Cited on page 93.)

[109] Le Gall, F. Powers of tensors and fast matrix multiplication. In Nabeshima,
K., editor, Proceedings of the 39th International Symposium on Symbolic and Alge-
braic Computation, pages 296–303. ACM, New York, 2014. (Cited on page 22.)

[110] Legierski, W. Search strategy for constraint-based class–teacher timetabling.
In Burke, E. and De Causmaecker, P., editors, Practice and Theory of Automated
Timetabling IV, volume 2740 of Lecture Notes in Computer Science, pages 247–
261. Springer, Berlin, Heidelberg, 2003. (Cited on page 93.)

[111] Lewis, R. A survey of metaheuristic-based techniques for university
timetabling problems. OR spectrum, 30(1):167–190, 2008. (Cited on pages 92

and 93.)

[112] Lodi, A. and Tramontani, A. Performance variability in mixed-integer pro-
gramming. TutORials in Operations Research: Theory Driven by Influential Ap-
plications, pages 1–12, 2013. (Cited on pages 100 and 150.)

[113] Lovász, L. and Plummer, M. Matching theory, volume 367. AMS, Chelsea
Publishing, 2009. (Cited on pages 23 and 104.)

[114] Marchand, H., Martin, A., Weismantel, R., and Wolsey, L. Cutting planes in
integer and mixed integer programming. Discrete Applied Mathematics, 123

(1):397–446, 2002. (Cited on page 17.)

[115] Marte, M. Models and algorithms for school timetabling – a constraint program-
ming approach. PhD thesis, LMU München, 2002. (Cited on page 92.)

[116] Martello, S. and Toth, P. Knapsack problems: algorithms and computer implemen-
tations. John Wiley & Sons, Inc., New Jersey, 1990. (Cited on page 143.)

[117] Megiddo, N. On finding primal-and dual-optimal bases. ORSA Journal on
Computing, 3(1):63–65, 1991. (Cited on page 16.)

[118] Mehrotra, A. and Trick, M. A. A column generation approach for graph color-
ing. INFORMS Journal on Computing, 8(4):344–354, 1996. (Cited on page 145.)

[119] Merlot, L. Techniques for academic timetabling. PhD thesis, University of Mel-
bourne, 2005. (Cited on page 92.)

[120] Micali, S. and Vazirani, V. V. An O(
√
|v| · |E|) algorithm for finding maxi-

mum matching in general graphs. In 21st Annual Symposium on Foundations
of Computer Science, pages 17–27. IEEE, New Jersey, 1980. (Cited on page 22.)

[121] Minkowski, H. Geometrie der Zahlen. Teubner, Leipzig, 1910. (Cited on
pages 11 and 12.)

[122] Motzkin, T. S. Beiträge zur Theorie der linearen Ungleichungen. Azriel,
Jerusalem, 1936. (Cited on page 11.)

[123] Mucha, M. and Sankowski, P. Maximum matchings via gaussian elimination.
In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 248–
255. IEEE, Washington, DC, 2004. (Cited on page 22.)

176 bibliography

[124] Nemani, A. K. and Ahuja, R. K. OR models in freight railroad industry. In
Cochran, J. J., Cox, L. A., Keskinocak, P., Kharoufeh, J. P., and Smith, J. C.,
editors, Wiley Encyclopedia of Oper. Res. and Management Sci. John Wiley &
Sons, Inc., 2011. (Cited on page 127.)

[125] Nemhauser, G. L. and Wolsey, L. A. Integer and combinatorial optimization,
volume 18. Wiley, New York, 1988. (Cited on pages 11 and 15.)

[126] Newton, H. N., Barnhart, C., and Vance, P. H. Constructing railroad blocking
plans to minimize handling costs. Transportation Science, 32(4):330–345, 1998.
(Cited on page 128.)

[127] Orlin, J. B. Max flows in o(nm) time, or better. In Boneh, D., Roughgarden,
T., and Feigenbaum, J., editors, Proceedings of the forty-fifth annual ACM sym-
posium on Theory of computing, pages 765–774. ACM, New York, 2013. (Cited
on pages 10 and 29.)

[128] Oxley, J. G. Matroid theory, volume 1997. Oxford University Press, Oxford,
1992. (Cited on page 12.)

[129] Palubeckis, G. On the graph coloring polytope. Information technology and
control, 37:7–11, 2008. (Cited on page 96.)

[130] Papoutsis, K., Valouxis, C., and Housos, E. A column generation approach
for the timetabling problem of Greek high schools. Journal of the Operational
Research Society, 54(3):230–238, 2003. (Cited on pages 92 and 93.)

[131] Petrovic, S. and Burke, E. K. University timetabling. Handbook of scheduling:
algorithms, models, and performance analysis, 45:1–23, 2004. (Cited on page 92.)

[132] Pisinger, D. An exact algorithm for large multiple knapsack problems. Euro-
pean Journal of Operational Research, 114(3):528–541, 1999. (Cited on page 143.)

[133] Post, G., Kingston, J. H., Ahmadi, S., Daskalaki, S., Gogos, C., Kyngas, J.,
Nurmi, C., Musliu, N., Pillay, N., Santos, H., et al. XHSTT: an XML archive
for high school timetabling problems in different countries. Annals of Opera-
tions Research, 218(1):295–301, 2014. (Cited on page 92.)

[134] Qi, N. On separation and adjacency problems for perfectly matchable sub-
graph polytopes of a graph. Operations research letters, 6(5):239–241, 1987.
(Cited on page 29.)

[135] Qu, R., Burke, E. K., McCollum, B., Merlot, L. T., and Lee, S. Y. A survey of
search methodologies and automated system development for examination
timetabling. Journal of scheduling, 12(1):55–89, 2009. (Cited on page 93.)

[136] Qualizza, A. and Serafini, P. A column generation scheme for faculty
timetabling. In Burke, E. and Trick, M., editors, Practice and Theory of Auto-
mated Timetabling V, volume 3616 of Lecture Notes in Computer Science, pages
161–173. Springer, Berlin, Heidelberg, 2005. (Cited on page 93.)

[137] Raghavjee, R. and Pillay, N. An informed genetic algorithm for the high
school timetabling problem. In Kotzé, P., van der Merwe, A., and Gerber, A.,
editors, Proceedings of the 2010 Annual Research Conference of the South African

bibliography 177

Institute of Computer Scientists and Information Technologists, pages 408–412.
ACM, New York, 2010. (Cited on page 92.)

[138] Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo, M., Gam-
bardella, L. M., Knowles, J., Manfrin, M., Mastrolilli, M., Paechter, B., Pa-
quete, L., and Stützle, T. A comparison of the performance of different meta-
heuristics on the timetabling problem. In Burke, E. and De Causmaecker, P.,
editors, Practice and Theory of Automated Timetabling IV, volume 2740 of Lec-
ture Notes in Computer Science, pages 329–351. Springer, Berlin, Heidelberg,
2003. (Cited on page 93.)

[139] Ryan, D. M. and Foster, B. A. An integer programming approach to schedul-
ing. Computer scheduling of public transport urban passenger vehicle and crew
scheduling, pages 269–280, 1981. (Cited on pages 77, 78, 82, and 149.)

[140] Santos, H. G., Ochi, L. S., and Souza, M. J. A tabu search heuristic with
efficient diversification strategies for the class/teacher timetabling problem.
Journal of Experimental Algorithmics (JEA), 10:2–9, 2005. (Cited on page 93.)

[141] Santos, H. G., Uchoa, E., Ochi, L. S., and Maculan, N. Strong bounds with
cut and column generation for class-teacher timetabling. Annals of Operations
Research, 194(1):399–412, 2012. (Cited on page 93.)

[142] Schaerf, A. Local search techniques for large high school timetabling prob-
lems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans, 29(4):368–377, 1999. (Cited on page 92.)

[143] Schaerf, A. A survey of automated timetabling. Artificial intelligence review,
13(2):87–127, 1999. (Cited on page 92.)

[144] Scheel, O. Structure and characterization of popular matchings. Bachelor’s
thesis, RWTH Aachen University, 2014. (Cited on pages 36, 38, and 39.)

[145] Schmidt, G. and Ströhlein, T. Timetable construction–an annotated bibliog-
raphy. The Computer Journal, 23(4):307–316, 1980. (Cited on page 92.)

[146] Schrijver, A. Theory of Linear and Integer Programming. John Wiley & Sons,
Chichester, 1986. (Cited on pages 10, 15, and 20.)

[147] Schrijver, A. Combinatorial Optimization: Polyhedra and Efficiency, volume 24.
Springer, Berlin, Heidelberg, 1st edition, 2003. (Cited on pages 12, 13, 24, 25,
26, and 27.)

[148] Socha, K., Sampels, M., and Manfrin, M. Ant algorithms for the university
course timetabling problem with regard to the state-of-the-art. In Esparcia-
Alcázar, A. I., editor, Applications of Evolutionary Computation, volume 7835 of
Lecture Notes in Computer Science, pages 334–345. Springer, 2003. (Cited on
page 92.)

[149] Sørensen, M. and Dahms, F. H. W. A two-stage decomposition of high school
timetabling applied to cases in Denmark. Computers & Operations Research,
43:36–49, 2014. (Cited on pages v, 91, 92, 93, 96, 103, 104, 105, 109, 112, 113,
and 157.)

178 bibliography

[150] Sørensen, M. and Stidsen, T. R. Comparing solution approaches for a com-
plete model of high school timetabling. Technical report, Department of
Management Engineering, Technical University of Denmark, 2013. (Cited on
pages 92 and 96.)

[151] Steinitz, E. Bedingt konvergente Reihen und konvexe Systeme.(Schluß.). Jour-
nal für die reine und angewandte Mathematik, 146:1–52, 1916. (Cited on page 12.)

[152] Tarjan, R. Depth-first search and linear graph algorithms. SIAM journal on
computing, 1(2):146–160, 1972. (Cited on page 9.)

[153] ten Eikelder, H. M. and Willemen, R. Some complexity aspects of secondary
school timetabling problems. In Burke, E. and Erben, W., editors, Practice and
Theory of Automated Timetabling III, volume 2079 of Lecture Notes in Computer
Science, pages 18–27. Springer, Berlin, Heidelberg, 2001. (Cited on page 91.)

[154] Thompson, J. and Dowsland, K. A. General cooling schedules for a simu-
lated annealing based timetabling system. In Burke, E. and Ross, P., editors,
Practice and Theory of Automated Timetabling, volume 1153 of Lecture Notes in
Computer Science, pages 345–363. Springer, Berlin, Heidelberg, 1996. (Cited
on page 93.)

[155] Tripathy, A. School timetabling – a case in large binary integer linear pro-
gramming. Management Science, 30(12):1473–1489, 1984. (Cited on page 93.)

[156] Ueda, H., Ouchi, D., Takahashi, K., and Miyahara, T. Comparisons of genetic
algorithms for timetabling problems. Systems and Computers in Japan, 35(7):
1–12, 2004. (Cited on page 92.)

[157] Unlu, Y. and Mason, S. J. Evaluation of mixed integer programming formula-
tions for non-preemptive parallel machine scheduling problems. Computers
& Industrial Engineering, 58(4):785–800, 2010. (Cited on page 146.)

[158] Valouxis, C. and Housos, E. Constraint programming approach for school
timetabling. Computers & Operations Research, 30(10):1555–1572, 2003. (Cited
on page 93.)

[159] Van Dyke, C. D. The automated blocking model: A practical approach to
freight railroad blocking plan development. In Transportation Research Forum,
volume 27, pages 116–121, 1986. (Cited on page 128.)

[160] Vanderbeck, F. Branching in branch-and-price: a generic scheme. Mathemati-
cal Programming, 130(2):249–294, 2011. (Cited on pages 72, 78, 79, and 83.)

[161] Vanderbeck, F. and Savelsbergh, M. W. A generic view of Dantzig–Wolfe
decomposition in mixed integer programming. Operations Research Letters,
34(3):296–306, 2006. (Cited on page 47.)

[162] Vizing, V. G. Vertex colorings with given colors. Metody Diskretnogo Analiza,
29:3–10, 1976. (Cited on page 144.)

[163] Weyl, H. Elementare Theorie der konvexen Polyeder. Commentarii Mathe-
matici Helvetici, 7(1):290–306, 1934. (Cited on pages 11 and 12.)

bibliography 179

[164] Whitney, H. On the abstract properties of linear dependence. American Jour-
nal of Mathematics, pages 509–533, 1935. (Cited on page 12.)

[165] Willemen, R. School timetable construction: algorithms and comlexity. PhD thesis,
TU Eindhoven, 2002. (Cited on page 92.)

[166] Wren, A. Scheduling, timetabling and rostering – a special relationship? In
Burke, E. and Ross, P., editors, Practice and Theory of Automated Timetabling,
volume 1153 of Lecture Notes in Computer Science, pages 46–75. Springer,
Berlin, Heidelberg, 1996. (Cited on page 91.)

[167] Zhang, D., Liu, Y., M’Hallah, R., and Leung, S. C. A simulated anneal-
ing with a new neighborhood structure based algorithm for high school
timetabling problems. European Journal of Operational Research, 203(3):550–
558, 2010. (Cited on page 93.)

colophon

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede. The style was inspired by Robert Bringhurst’s seminal
book on typography “The Elements of Typographic Style”. classicthesis is available
for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis

https://bitbucket.org/amiede/classicthesis

	Preface
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Theory
	1 Introduction
	1.1 Basic Notation
	1.2 Computational complexity
	1.3 Graphs
	1.4 Polyhedral theory
	1.5 Matroids
	1.6 Linear programming
	1.7 Solving linear programs
	1.8 (Mixed) Integer programming
	1.9 Total unimodularity and total dual integrality

	2 Matching Theory
	2.1 Basic definitions
	2.2 Algorithms for matchings
	2.3 The matching polytope
	2.4 The partial transversal polytope
	2.5 The perfectly matchable subgraph polytope
	2.6 Bipartite hypergraph matchings
	2.7 Popular matchings

	3 Decomposition Methods
	3.1 Further reading
	3.2 Dantzig-Wolfe decomposition
	3.3 Dantzig-Wolfe decomposition for MILP
	3.4 Benders' decomposition
	3.5 Benders' decomposition for MILP

	4 Matching as subproblem for Benders' decomposition
	4.1 Bipartite matching as subproblem
	4.2 Bipartite hypergraph matching as subproblem

	5 Heterogeneous Aggregation for Dantzig-Wolfe decomposition
	5.1 Aggregation of identical subproblems
	5.2 Branching with identical subproblems
	5.3 Aggregation with heterogeneous subproblems
	5.4 Branching with heterogeneous subproblems
	5.5 Pricing with heterogeneously aggregated subproblems

	Application
	6 Timetabling problems
	6.1 Introduction
	6.2 Literature review
	6.3 Problem definition
	6.4 Optimization algorithms
	6.5 Experiments
	6.6 Conclusions

	7 The multi-stage train formation problem
	7.1 Introduction
	7.2 Related work
	7.3 Definitons
	7.4 Feasible schedules
	7.5 Column generation formulation
	7.6 Compact formulation
	7.7 Aggregated column generation formulation
	7.8 Conclusion

	8 Various applications of heterogeneous aggregation
	8.1 Problem defintions
	8.2 Experiments – MKP specific
	8.3 Experiments – generic GCG implementation
	8.4 Conclusion

	9 Summary and outlook

	Appendix
	A Experimental results on the timetabling instances
	A.1 Udine instances

	B Experimental results on aggregation instances
	B.1 Dedicated multiple knapsack solver
	B.2 Generic implementation

	Bibliography
	Colophon

